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Abstract

Laminar Analogues of Atmospheric Vortices

This thesis comprises a series of investigations into isolated vortices that exist
within the atmosphere. It consists of numerical and experimental investigations
backed up by mathematical analysis. The main thrust of the work is in using laminar
analogues of complex phenomena to aid the understanding of the key physical
processes involved.

The first portion of the research concerns the dynamics of eyes (regions
of reversed flow) at the centres of vortices. We expand upon previous work
investigating the process of eye formation in shallow rotating convection. Through
a series of numerical simulations we observe that, as thermal forcing is increased,
the system undergoes a Hopf bifurcation from a steady state to one in which the eye
oscillates. Examining the nature of the oscillations we propose that this behaviour
results from a trapped inertial wave, providing a range of evidence to support this
theory.

Following on from this we present a series of laboratory investigations designed
to replicate our numerical studies. In addition to examining large scale circulations
we also include some observations of rotating cellular convection. Though
unsuccessful in generating a steady eye, our discussions of experiment design and
implementation provide a number of insights, and we hope that future experimental
work will build upon this preliminary study.

The latter portion of the thesis is given over to the study of thermals. We
consider the life cycle of an axisymmetric laminar thermal as it transitions through a
number of distinct stages undergoing several morphological changes. A significant
achievement of the study is to establish a mathematical framework that can be used
throughout the life cycle, allowing us to shed light on the transitions between stages
and address some previously unresolved questions. Our numerical results show
the early stages of development to be key in determining the final properties of the
buoyant vortex ring that is produced, with thermals displaying an independence
above a critical Reynolds number. Another notable observation is that the wake
left behind by the first vortex ring can itself roll up to form a second ring that
follows after the first. It is hoped that this framework and our observations of
laminar thermals might perhaps be useful in providing new approaches for studying
atmospheric convection.
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Chapter 1

Introduction

The planet earth is a complex system. To understand it better we might break it down
into a series of ‘spheres’; the atmosphere, hydrosphere, cryosphere, lithosphere,
magnetosphere, and biosphere. Several of these are visible in NASA’s ‘blue marble’
photograph of the Earth in figure 1.1. The aurora australis shines above the icy
plains of Antarctica, with the continental landmass of Australia visible in the top
left across the cloud covered Antarctic ocean.

Fig. 1.1 A Blue Marble image of the Earth showing the aurora australis from the
IMAGE satellite. NASA.
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Chapter 1. Introduction 1.1. Geophysical fluid dynamics

The future of the planet, and of those that inhabit it, is greatly dependant on
how these systems interact with one another. This is the main thrust of the Gaia
hypothesis developed by Lovelock & Margulis (1974). It proposes that organisms
are engaged in a symbiotic relationship with the planet that helps maintain and
advance life. The unprecedented increase in global temperatures over the course of
the last century (Munroe, 2016) might lead some to question this notion however.
Lovelock takes a rather bleak outlook on global warming predicting that global
temperatures will continue to rise and that the latter part of the century will see a
cull of up to 90% of the human population (Vince, 2009).

Anthropogenic climate change might be viewed as an antithesis of the Great
Oxygenation Event of around 2,400 million years ago. This was a dramatic change
in the composition of the atmosphere that triggered the ‘snowball Earth’ or Huronian
glaciation period. Following the IPCC ‘business-as-usual’ scenario the outlook
does not end well for our species; life may continue, but not as we know it.

The bulk of the scientific community, however, seek to prevent excessive global
temperature rise. To achieve this requires an understanding of the climate and the
Earth system. By studying the atmosphere, hydrosphere, cryosphere, and the way
in which they interact it is hoped that we might gain insight into how to preserve
them and repair damage. An example of this is the global initiative since 1989
to phase out ozone depleting chemicals following the discovery of the Antarctic
ozone hole by the British Antarctic Survey in 1985 (Farman et al., 1985). Nearly
30 years later NASA has finally been able to provide the first confirmation that the
ozone layer is beginning to recover (Strahan & Douglass, 2018).

In this thesis we hope to explore some atmospheric phenomena and improve
our physical understanding of them through the use of simple models.

1.1 Geophysical fluid dynamics
A number of the spheres in the Earth system are comprised of fluids. This is where
the role of the geophysical fluid dynamiscist comes in. The field of geophysical
fluid dynamics, GFD for short, is the branch of fluid dynamics concerned with
any geophysical phenomena. These might range from the large scale circulations
of atmospheres and oceans to volcanic plumes and avalanches. From explaining
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Saturn’s hexagonal polar vortex to the sustainment of the geodynamo. A number
of these phenomena are illustrated in figure 1.2. The general paradigm of GFD
is to take a seemingly complex problem and make as many simplifications as
possible to expose the core principles and underlying mechanisms. By stripping
away inessential details one can come to a fundamental understanding of why,
rather than simply observing what. This covers one of the main drivers of GFD
research - understanding as an end in itself. Understanding a phenomenon provides
an appreciation of its beauty and often only furthers our sense of wonderment. All
geophysical fluid dynamiscists are inspired in their work by at least one captivating
phenomenon.

The other reason for GFD research is to benefit society. This often ties it closely
to another field of research, that of modelling. As computational facilities have
increased over the course of the last century there has been an exponential rise in the
use and complexity of numerical models in all areas of science. Weather forecasting
has come a long way since the first computation performed by the scientist Lewis
Fry Richardson (1922) for the Western Front. These days forecasting models can
be run faster than real time, solving the primitive equations for ever more complex
scenarios with improving accuracy. Their ability to take an initial condition and
then solve into the future does not mean that the field of GFD is redundant, however.
As phenomena emerge from computational models any meaningful interpretation
of the results requires an understanding of the basic principles. When something
unexpected occurs it is down to the scientist to interpret the results. Doing this
requires a firm grasp of the key concepts, an understanding of the field, and the
ability to apply these skills to provide physical insight.

It must also be remembered that no computational model is ever perfectly
correct. What happens when things go wrong, and how to fix or improve them
requires an understanding of GFD. If a model does not replicate some physical
behaviour we must ask why, and what might be missing. Despite the advances
in computational capabilities, there is still a limit in the abilities of all numerical
models. These usually manifest as restrictions in the resolution due to the quantities
of data required or the time taken to perform calculations. In an effort to sidestep
these restrictions, many models make use of parametrisations in order to represent
processes that occur at scales finer than the resolution of a model. Examples of
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(a) July 2018 phytoplankton bloom in the
Gulf of Finland. Landsat 8, NASA.

(b) Plume from the eruption of Mount
Redoubt. USGS.

(c) Saturn’s hexagonal polar vortex. Cassini,
NASA.

(d) An image from the famous
Glatzmaier-Roberts geodynamo

simulation. NASA.

(e) Avalanche in Zinal, Switzerland.
Zacharie Grossen.

Fig. 1.2 Examples of geophysical fluid dynamics phenomena.
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this might be cloud microphysics in an atmospheric model, or pollutant dispersion
from ground sources. These parametrisations are often developed from simple
models and physical laws, requiring an in depth understanding in order to perform
correctly as part of a larger simulation.

The field of GFD will forever be intertwined with the numerical modelling,
and there are still plenty of challenges. An excellent overview of the field that
influenced and expands upon the ideas set out here is given by Vallis (2016).

1.2 The menagerie of atmospheric vortices
Before discussing atmospheric vortices, let us first consider what is meant by
the word vortex. In the context of fluid dynamics a vortex is a flow that rotates
about some axis. Flows that satisfy this statement exist in a variety of settings
and exhibit a wide range of behaviours, a few examples are illustrated in figure
1.3. Vortex Flow in Nature and Technology by Lugt (1983) provides a wonderful
description of how widespread and influential vortex phenomena are and makes
for excellent bedtime reading. These swirling flows have awed and fascinated
mankind throughout history up to the present day, whether it be Odysseus facing
the whirlpool Charybdis in Homer’s Odyssey, or God speaking out of whirlwinds
in the Bible. It is broadly accepted nowadays that vortices are not manifestations of
supernatural beings, nor do they hide any deep symbolism, yet still they maintain
an air of wonder and mystery. The scientific study of vortices has existed for a long
time and has attracted the attention of a number of great scientists and thinkers
including Aristotle, da Vinci, and Kelvin, yet there is still much to be understood.

The atmosphere is rich in vortices across a wide range of scales, from the Hadley
cells that span the troposphere (Vallis, 2017) down to turbulent dissipation at the
Kolmogorov scale (Davidson, 2013). In contrast to daily, annual, and longer global
circulations, there are many aperiodic phenomena that occur on the synoptic, meso-
and microscales as a result of instabilities. These isolated vortices are particularly
fascinating and we now provide a review of some of the common types.
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(a) Corryvreckan Maelstrom
off the coast of Scotland.

Walter Baxter

(b) Wingtip vortices behind
an aircraft.

NASA

(c) A dolphin blowing an
underwater vortex ring.

Dr. Ken Marten

(d) Kármán vortex street
behind Yakushima.

NASA

(e) Volcanic ring above
Mount Etna.

Angelo Salemi

Fig. 1.3 Examples of the wide range of vortex flows
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1.2.1 Tropical cyclones
Also known as typhoons or hurricanes, these are perhaps the largest isolated
atmospheric vortex. They have a vast diameter of the order of 1000 km, covering
a large region, and extend up to the height of the tropopause. This puts them
firmly into the category of disklike vortices. One of their most striking features is
the cloud free eye that often forms at the centre, as seen in figure 1.4. Although
a number of explanations have been put forward for how and why eyes form, it
remains a strongly debated topic.

Fig. 1.4 Hurricane Isabel from the
International Space Station 2003

NASA

Fig. 1.5 Tropical cyclone tracks and intensity
over the last 150 years

Robert A. Rohde, NASA

Cyclogenesis, the conditions for and process of cyclone formation, is a large
field of research important to meteorologists and forecasters (Gray, 1967). Although
our research is not concerned with the formation process it is useful to have a
general understanding. There is a vast body of literature on tropical cyclones,
but a good review of the formation and mature structure can be found in Wang
(2012). Tropical cyclones typically form over warm oceans in the tropics. It is
from these warm waters that they obtain their energy through heat transfer. A
low pressure disturbance (depression) in the atmosphere draws in surrounding air.
As it converges, this air acquires a cyclonic component of rotation through the
action of the Coriolis force. Tropical cyclones are generally only observed to form
within ±5-15° of the equator where the conditions of both warm ocean waters and
a sufficiently strong Coriolis force can be met.

The air spiralling inwards along the ocean surface increases in speed. When
the maximum substained windspeed is above 33 m s−1 the storm is regarded as a
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category 1 cyclone on the Saffir-Simpson scale. This ranges up to category 5 for
storms with windspeeds in excess of 70 m s−1. As the air converges towards the
low pressure centre an updraft forms. Latent heat is released by the moist air as it
ascends, increasing its buoyancy and driving it further upwards as more air is drawn
in from below. Eventually the air reaches the tropopause where a sharp change
in temperature gradient prevents it from ascending further. It then moves radially
outwards, acquiring anticyclonic spin before descending back to the ocean surface.

Once a tropical cyclone has formed, it moves predominantly with the envi-
ronmental flow (the trade winds) from east to west. Storms are sufficiently large
that the Coriolis force has a secondary effect, however, steering them polewards.
Eventually the storms move over cooler waters or land and their energy source is
removed causing them to decay in strength, although often not before they cause
catastrophic damage. This is clearly illustrated in figure 1.5 which shows storm
tracks coloured by intensity according to the Saffir-Simpson scale ranging from
tropical depression up to a category 5 storm.

There is a wealth of observational data from tropical cyclones, much of it
from NASA and NOAA, with the majority of studies conducted by meteorologists
focussing on the overall structure, cyclogenesis, and motion. Much of this work
involves complex models, often numerical, with many different parameters in order
to emulate real world behaviour.

In Chapter 4 we shall present a simplified model of a tropical cyclone and
provide an explanation for recently observed oscillations in the eye.

1.2.2 Tornadoes
Much smaller than tropical cyclones, tornadoes display a columnar structure
consisting of a rapidly rotating pillar of air that reaches from the ground up to
the cloud base. Though they can take on a range of sizes and strengths, they
are typically 50 − 100 m in radius and 2 km in height, with windspeeds up to
180 km h−1 (Rotunno, 2013; Wurman et al., 1996). The flow is, to a leading order,
in a cyclostrophic balance between pressure and inertia, and is often made visible
by the condensation funnel that forms at the low pressure centre.
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Fig. 1.6 Tornado in Manitoba
Justin Hobson

Fig. 1.7 Supercell on the Great Plains
Topazwoolenwick

Rossby numbers are large for tornadoes so it is perhaps surprising that only
around 1% are anticyclonic. The reason for this is that the majority (around
80% (Markowski & Richardson, 2009)) form beneath large thunderstorms known
as a supercells (figure 1.7). These are rotating storm systems characterised by
the presence of a mesocyclone resulting from a combination of wind shear and
convective updrafts (Holton & Hakim, 2012). The wind shear comes from large
scale circulations in the atmosphere, thereby indirectly providing the cyclonic
preference. The precise formation mechanisms of tornadoes are complex and there
is still much to be understood (Markowski & Richardson, 2009).

The intense winds and surrounding storm make it difficult to observe the internal
structure and dynamics of tornadoes in detail, although progress has been made
using techniques such as Doppler radar. These observations suggest that tornadoes
possess a calm central core with slight downflow (Wurman et al., 1996), although
results are available for only a limited number of cases and are of relatively low
resolution. An important factor that remains largely unknown is the detail of the
flow at the top of a tornado. This presents a significant challenge when it comes
to defining boundary conditions. Despite this, the study of tornadoes appeals to
a wide range of communities and there is a large source of literature covering
theoretical models and both numerical and laboratory experiments.
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1.2.3 Devils
The broad class of vortices known as devils are all essentially the same flow, each
with a different method of visualisation. The most well known of these is the dust
devil, illustrated in figure 1.8, that forms in desert regions. There also exist snow
devils, steam devils, coal devils, and ash devils. The following discussion will
focus on the dust devil, though similar theory applies to all of these. An interesting
derivative is the fire devil of figure 1.9. The processes that form a normal devil are
highly accentuated by the heat release from combustion of material that is swept
up into the vortex giving rise to a thin violent structure.

These columnar vortices form on hot days under clear skies as a result of
convection and light winds. Solar heating of flat ground in turn heats the air above
causing it to rise. The rising air stretches boundary layer vorticity into the vertical
direction, eventually leading to the formation of a vortex (Rafkin et al., 2016).
Devils typically display a more parallel columnar shape than tornadoes with little
broadening with height. They take on a range of sizes and strengths from 0.5 m
wide and 10 m tall up to tens of m across and heights of a km or more. Windspeeds
can range from 15 − 30 m s−1. Lifetimes are typically seconds to minutes, though
larger devils have been observed to last for tens of minutes before dissipating.

A large number of observations and theoretical ideas about dust devils come
from the work of Sinclair (1966). Of particular note is the discovery of weak
downflow in the core, particularly at low levels, which was later backed up by
observations made in California by Ryan & Carroll (1970). This structure is
shown in figures 1.10 and 1.11. It is interesting how this core downflow bears a
resemblance to the flow in the eye of the tropical cyclone, despite their differences
in shape and size. We shall return to this point in Chapter 4.

1.2.4 Waterspouts
Another columnar vortex that forms over the oceans and other bodies of water,
waterspouts are usually separated into two classes; tornadic and fair weather.
Tornadic waterspouts are simply tornadoes that form over water, identical to
those described above. Fair weather waterspouts (figure 1.12) are a very different
phenomenon, however, more closely related to the dust devil.
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Fig. 1.8 Dust Devil in Arizona
NASA

Fig. 1.9 Fire Devil in Missouri
Janae Copelin

Fig. 1.10 Vertical velocities in
the dust devil taken from Sinclair

(1966)

Fig. 1.11 Lower structure of a dust devil
taken from Sinclair (1966)
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Fig. 1.12 Waterspout in the Florida Keys
NOAA

Studies of waterspouts are limited, consisting almost entirely of observational
data. The most notable studies were performed by the meteorologist Golden (1968,
1971, 1974), since which they have received little attention. Golden collected a
large amount of data to build a detailed description of the structure of the mature
waterspout and its life cycle. These are presented in his papers alongside excellent
photographic images.

Focussing on the structure of the mature waterspout, Golden describes it as a
rapidly rotating column of air approximately in cyclostrophic balance, typically
displaying a ‘stretched hourglass shape’. The upper region is often visible by a
condensation funnel that forms at the low pressure centre. Above the sea surface
there is a ‘spray vortex’, out of which rises the ‘spray sheath’ - an intense rising
annulus, the vertical extent of which depends on spray size and vortex intensity.

Golden describes the spray sheath as having a ‘central calm eye’, surrounded
by sharp gradients in tangential windspeed. Maximum tangential winds occur just
outside of this ‘eye’ and particle tracking of the spray vortex suggests a Rankine
vortex profile. The hollow core of the waterspout is observed to contain slowly
subsiding air, although no reason for this is given.

The waterspout often reaches the cloud base where it becomes hard to observe
flow structure, as was the case for tornadoes, and the details of the flow are unclear.
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Fig. 1.13 Waterspout Structure taken
from Golden (1971)

Fig. 1.14 Waterspout Structure taken
from Golden (1974)

Two of Golden’s diagrams of waterspout structure are shown in figures 1.13 and
1.14.

Golden’s research follows the development of a waterspout from a weak vortex,
visible from dark spots on the water surface, through the intensification process as
it becomes wider in diameter with stronger windspeeds and a condensation funnel
appears higher up. As it reaches maturity, the condensation funnel becomes visible
over almost the entire length of the vortex, and the high velocities whip up the surface
of the water giving rise to the spray vortex and sheath. Waterspouts generally exist
in maturity for around 2-17 minutes before becoming greatly contorted, weakening,
and disappearing. How the vortex forms prior to its first appearance as a dark spot
is unclear, although the fact that spots appear together has led to the suggestion that
the vorticity source may be a vertical vortex sheet produced by wind shear. Others
propose the source is convective stretching of boundary layer vorticity in a manner
similar to the dust devil.

Finally, it is worth noting that waterspouts, like dust devils, do not remain
stationary, but are observed to propagate along the water surface with velocities of
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up to 15 m s−1. The base often moves faster than the top leading to vertical tilting
and can cause the vortex to become highly contorted.

1.2.5 Differences and similarities
All of these vortices have a broadly similar flow structure, with a swirling inflow
at the base that turns upward near the centre and rises before diverging at the
top. The cores of these vortices are often weaker than the surrounding flow, with
downflow observed along the axis. The main difference between them appears to
be the fact that they fall into one of two classes, columnar or disklike. Is there a
structural reason that aspect ratios of around 1 are not observed? The formation
mechanisms for each of these vortices are all very different, with buoyancy and
thermodynamics being important in a number of cases. One might seek to quantify
the similarities between the vortices, and ask whether there could be a general
theory to explain certain features. One might also ask how similar the downflows at
the cores of the vortices are; the tropical cyclone appears to have downflow starting
from the highest levels, whilst Sinclair’s observations of the dust devil suggest that
the downflow has a broader region of upflow above it. Are these differences due to
separate mechanisms, or can same theory be applied in different settings?

Table 1.1 contains a comparison of key numerical values taken from literature
for a number of the vortices discussed above. For phenomena that occur across a
range of scales this is best done using non-dimensional parameters. The aspect
ratio, Λ, provides a clear indication of which vortices are disklike (< 1) and which
are columnar (> 1). Consideration of the Reynolds numbers suggests that these are
all turbulent flows, as one might expect. More interesting is the variation in Rossby
number. We see that Ro is typically small for disklike vortices, and large for the
smaller columnar vortices. However, although small and hence significant to the
overall structure of the tropical cyclone we note that in the core, where velocities are
large, the Rossby number rises above one meaning background rotation is relatively
insignificant here.
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1.2.6 Thermals and rings
Before concluding our introduction to atmospheric vortices we discuss a different
type of vortex to those that we have considered so far. Whilst all of the vortices
discussed above have a linear axis of rotation, this does not have to be the case. As
we saw in figure 1.3e, the axis of rotation can be curved, in some cases forming a
closed ring. These types of structures are often associated with buoyant flow and
known to fluid dynamicists as thermals. Thermals form from buoyant anomalies in
a fluid and evolve under the action of the buoyancy force. As they move they twist
and contort into different shapes, often ending up with a mushroom or ring-like
structure.

Perhaps the most well-known example of a thermal is the mushroom cloud.
These form after the rapid release of large amounts of energy, most commonly
from explosions. The energy heats up its surroundings to form an isolated patch of
buoyant fluid that begins to rise. As it does so, gradients in temperature generate
vorticity causing the ball of heat to evolve into a distinctive mushroom shape. A
cap forms at the top of the structure with a stem beneath, squeezed in by entrained
fluid. An example of this can be seen in figure 1.15 which shows the development
of a mushroom cloud following a nuclear explosion.

Although mushroom clouds are perhaps the most visually striking case of
thermals, there are a number of other examples in the atmosphere. Perhaps the
most common occurrence is atmospheric convection above a localised heat source.
As the air above is warmed, it forms an isolated buoyant patch of fluid that begins to
rise, developing a mushroom and then ring-like structure. As this air rises further
these thermals may become visible as cumulus clouds. They are often used by birds
and gliders as means to rise to greater heights to assist flight. Figure 1.16 shows
this, with a cluster of paragliders riding a thermal. Note how they are grouped
together inside an isolated patch of buoyant air.

Another interesting example of buoyant rings in the atmosphere are the smoke
rings that have been observed at various volcanoes across the globe (Fuentes, 2014),
an example of which was shown in figure 1.3e. They have been observed to persist
as stable rings for relatively long periods of the order of several minutes up to an
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Fig. 1.15 Mushroom cloud of the
‘Greenhouse George’ nuclear

explosion
U.S. Federal Government

Fig. 1.16 A group of paragliders
riding a thermal in

WA, USA
Kozi radio

hour. Although there are many observations there is still no clear consensus as to
how these buoyant rings form (Whitehouse, 2000).

As we shall see, both thermals and the axial vortices discussed above can
be described by the same set of equations in which the evolution of azimuthal
vorticity is key to their structure and development. This is highlighted further by
the interesting analogy that exists between rotating and buoyant flows (Veronis,
1970). There is a mathematical equivalence between the equations for rotating
flow and those for buoyant flow, as we shall soon see. As a result of this there are
a number of phenomena that occur in one system that have a direct counterpart
in the other, and it is sometimes useful to analyse the behaviour of one system
in order to better understand the other. This is particularly useful in geophysical
fluid dynamics where the effects of buoyancy and rotation are key. For example,
the inertial waves present in rotating flows are a mathematical counterpart of the
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internal gravity waves that occur in a stratified fluid. The parallels between different
phenomena in each of these cases is explored in depth by Davidson (2013).

Returning to thermals, the evolution of a patch of heat into a mushroom, and
then on into a ring is an interesting process. As we shall see, each of these stages
have received attention in their own right by previous authors, but there is little
discussion of the transitions between the stages. In addition to this, although the
development of turbulent thermals has been studied (Scorer, 1957) there is very
little discussion of their laminar counterpart. We shall discuss laminar thermals in
Chapter 6.

1.3 Scientific models
Models, analogies, and cartoons hold an important role in scientific research and
understanding. We have already discussed how one of the main objectives of GFD
is to strip away inessential physics to leave a simple model that can replicate physical
behaviour. This Occam’s razor-like approach, describing complex phenomena with
simple models can be found throughout the sciences however. To illustrate the
ideas of using a simplified model to describe a complex system let us consider the
eruptions of volcanoes.

When making meteorological predictions and evaluating health and flight risks
due to volcanic ash it is useful to know the mass of volcanic material ejected into
the atmosphere during a volcanic eruption. Although there exist many complex
numerical models of volcanic eruptions, the inputs they require cannot be accurately
gathered in real time. Instead meteorologists make use of more simple, local models
to make predictions that can then be taken as inputs into a larger circulation model.
Perhaps the most basic example is the well-known mathematical model for a buoyant
plume by Morton et al. (1956). Using this model it is possible to accurately predict
the mass flux of material from a volcano based upon how high the ash plume rises
in a stratified atmosphere. This is an example of how a highly simplified model,
limited to the necessary details, can be used to obtain important information.

All models have their limits however. For the buoyant plume model applied
to volcanic eruptions one of these limitations is the assumption of a quiescent
environment. This simplification was not appropriate in the case of the 2010
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eruption of Eyjafjallajökull in Iceland, and led to incorrect predictions resulting in
significant disruption to air travel over northern and western Europe. The inaccurate
estimations of the model occurred as a result of a significant crosswind causing
the plume to bend over and ash to be swept away instead of rising higher into the
atmosphere. This behaviour can be seen in the photo of figure 1.17. Once this
effect was retrospectively incorporated into the model it was found to make more
accurate predictions of mass flux, as discussed by Woodhouse et al. (2013)

Fig. 1.17 The 2010 eruption of Eyjafjallajökull from Hella
Boaworm

The statistician Box (1979) first coined the well known phrase ‘all models
are wrong, but some are useful.’ This encapsulates the idea it is impossible to
model every last detail of a physical system; there will always be some underlying
assumptions or approximations. Provided these are well justified, however, a model
can still shed light, provide understanding of a phenomenon, and replicate it with
sufficient accuracy. It is always important to bear in mind why a model has been
developed and what it is designed to do. Problems can arise when models are
applied in inappropriate situations (as for Eyjafjallajökull above) or the results are
assumed to be more realistic than the model was ever designed to be. Box suggests
that the question that should be asked is ‘Is the model illuminating and useful?’.

From the perspective of GFD a good model is one that can explain a complicated
phenomenon by showing how it arises in a more simple system. By reducing a
system down to a minimum number of variables and effects it becomes easier to
inspect and isolate the causes for different behaviours. An approach that can be
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often be useful in fluid dynamics is to construct a laminar model as an analogy to a
more complicated system. In addition to reducing a problem down to a minimum
number of variables and removing insignificant effects, this also removes turbulence
making the system much easier to analyse. By understanding the behaviour of a
laminar analogue we might then return to the complicated system and see where
similar behaviours occur, and what the explanation for them in the analog is.

1.4 Scope and structure of thesis
The aim of this work is to develop models, or analogs, of fluid phenomena that
might help explain and understand geophysical phenomena, in particular isolated
vortex flows in the atmosphere. Many GFD phenomena occur as a result of two key
effects; buoyancy and rotation. The work presented in this study is concerned with
both of these. In the next chapter we shall review the relevant theory necessary to
understand these effects and develop equations that will be used throughout the
thesis. This is followed in Chapter 3 by a discussion of a numerical code that was
developed in order to perform simulations of axisymmetric, buoyant, rotating flow.

This work was inspired by the atmospheric phenomenon of the tropical cyclone,
as well as the other vortices discussed above. Although these storms are extensively
studied due to the catastrophic damage they cause, there is still much that is not
understood. The particular aspect that we choose to focus on is the eye that forms
at the centre of the storm. Although several theories have been put forwards for
how this occurs there is still no clear consensus or universally accepted theory. The
ambition when starting this work was to extend the recent model proposed by Oruba
et al. (2017) that is capable of displaying eyes. In addition to exploring its behaviour
it was also hoped to examine if the mechanism by which eye formation occurs
within this model could also be present in other atmospheric vortices. Chapter 4
contains a discussion of eye formation mechanisms and the results of numerical
simulations. It is found that the model displays oscillations which we seek to
provide an explanation for before tying the results and the model back to real
storms.

In Chapter 5 a series of laboratory experiments are presented. These were
performed with the intention of replicating the behaviour seen in the simulations

20



Chapter 1. Introduction 1.4. Scope and structure of thesis

of Chapter 4. As laboratory experiments of this system have not been performed
before we shall discuss the design of the experiment and how it differs from
the simulations of chapter 4. Results for large vortices are presented alongside
observations that were made of cellular convection on a smaller scale. The chapter
finishes by reviewing the results of what can be taken as a preliminary study in this
area that might serve to inform future experiments.

Finally in Chapter 6 we shall discuss the evolution of a laminar thermal. We
present a unified mathematical framework by which the system can be analysed in
order to make links between the different stages of development. By following the
entire life cycle of a thermal using this framework it is possible to link the properties
of the end state to the initial conditions, and come to a better understanding of how
and why the different structures form and behave as they do.

The nature of research is that one never knows exactly what is going to happen.
Indeed, this is its raison d’être. The discovery of oscillations that makes up much of
the discussion of Chapter 4 was unexpected prior to beginning this work. Similarly
the observations of cellular convection in Chapter 5 were made whilst exploring
outside the main parameter space. The entirety of Chapter 6 began as a test case
for our numerical code that displayed interesting behaviour and we decided was
worthy of further exploration. The voyage comes to a conclusion in Chapter 7,
where we summarise the work of this thesis, reviewing its contributions with an
outlook to the future.
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Chapter 2

Theoretical review

This chapter reviews the key mathematics and fluid dynamics that forms a basis for
this thesis. We begin with the governing equations of fluid mechanics, extending
them into a vortex dynamics approach. We discuss the merits of this paradigm and
review some of the key aspects appropriate to this work, in particular the process of
vortex stretching. Following this the effects of buoyancy and rotation are discussed.
Both of these have a significant impact on fluid flow, sometimes in unexpected
or counter-intuitive ways. Finally the equations for axisymmetric, swirling flow
that form the basis for the analysis in future chapters are developed. Much of the
material in this chapter can be found in the textbooks by Batchelor (1967), Acheson
(1990), and Davidson (2013).
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2.1 The equations of fluid mechanics
In what follows we consider the behaviour of an incompressible, viscous fluid. The
motion of such a fluid is described by the well known incompressible Navier-Stokes
equation,

Du
Dt
= −1

ρ
∇p + ν∇2u + F

ρ
, (2.1)

where F represents any body forces which may be acting on the fluid, and the
continuity equation

∇ · u = 0 . (2.2)

An insightful and oft-employed paradigm for analysing fluid flow is that of
vortex dynamics (Saffman, 1992). Many flows can be more readily understood in
terms of vorticity, mathematically given by the curl of the velocity field, than in
terms of pressure and velocity. Physically the vorticity is a measure of the local
rotation, or angular velocity of a fluid. The advantages of this approach can be seen
by writing the governing equation in terms of vorticity. This is done by taking the
curl of the Navier-Stokes equation (2.1):

Dω

Dt
= (ω·∇)u + ν∇2ω + ∇ ×

(
F
ρ

)
. (2.3)

The absence of the (non-local) pressure term avoids any misleading interpretations
of cause and effect due to the coupled behaviour of pressure and velocity. Instead, all
terms in the vorticity equation are local to the point under consideration. Vorticity
can only be spread through advection or viscous diffusion. Both the pressure
and velocity are easily recoverable, however, by inverting the vorticity relation,
∇ × u = ω.

In order to understand behaviour in terms of vorticity let us examine equation
(2.3) in detail. On the left we see the familiar material derivative, whilst on the far
right there is a viscous diffusion term. The first term on the left hand side represents
the intensification of the vorticity field through the action of vortex stretching.
To understand this process consider the vortex tube in figure 2.1. Assuming the
vortex lines to be frozen into the fluid (as per Helmholtz’s (1858) second theorem
of vortex dynamics) the tube will be distorted through advection by the velocity
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Fig. 2.1 Cartoon illustrating the process of vortex stretching

field. This takes it from its original position, with vorticity ω1, to that at a later
time with vorticity ω2. Consider this behaviour in an intrinsic co-ordinate system
aligned with the axis of the vortex tube, s. As the tube is distorted by the flow it
lengthens along s. Continuity requires the cross-sectional area to decrease, thus
reducing the moment of inertia along s. Since vorticity is a measure of the local
spin, the vorticity of the material tube must increase in order to offset the decrease
in moment of inertia and conserve angular momentum. The reverse is, of course,
true should the tube have shrunk in length. This process is encapsulated in the third
of Helmholtz’s laws; the conservation of vorticity flux along a vortex tube.

Now consider the exact same process, but from the perspective of a Cartesian
co-ordinate system (x, y), also illustrated in figure 2.1. We see that the distortion of
the vortex tube by fluid motion leads to it having a component in both co-ordinate
directions rather than just in y as it began. This process is sometimes described as
‘vortex tilting’, since vorticity has been transferred from the y to the x direction.
However, as we can see, this is simply the result of vortex stretching being viewed in
a fixed co-ordinate system. To avoid ambiguity we refer to any processes resulting
from the (ω · ∇)u term as vortex stretching.

2.2 Buoyant flows
Many flows, especially those of a geophysical nature, involve thermodynamic
processes. The effect of temperature variation on the density of a fluid can lead to
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a variety of interesting behaviour. Some of these can be treated mathematically by
an extension to the equations of motion as follows.

Consider a fluid in which the variations in density are small such that we can
apply the commonly used Boussinesq approximation (Batchelor, 1967). This states
that when density variations are small relative to the density of the fluid, the only
effect they have is to contribute to the buoyancy body force. In this case density
can be written as ρ = ρ0 + ρ

′, where ρ0 is the background density distribution, and
ρ′ is a perturbation. The equation of motion (2.1) then becomes

Du
Dt
= − 1

ρ0
∇p̃ +

ρ′

ρ0
g + ν∇2u , (2.4)

where the hydrostatic pressure due to ρ0 has been incorporated into the pressure
term as p̃ = p + p0 (z). Gravity is assumed to act in the negative z direction. The
buoyancy term, g ρ′/ρ0, is then the (non-hydrostatic) gravitational force acting on
the fluid. The corresponding vorticity equation is

Dω

Dt
= (ω·∇)u + ∇

(
ρ′

ρ0

)
× g + ν∇2ω , (2.5)

where ∇ (ρ′/ρ0) × g is sometimes known as the Boussinesq baroclinic term. It
encapsulates the processes of vorticity generation through misalignments between
gravity and density gradients. We see that the component of vorticity aligned with
g cannot be directly influenced by the buoyancy force.

Often density differences occur due to variations in temperature, especially in
the atmosphere. In the same way as for density, it is often helpful to separate the
temperature field into two parts; a background temperature T0 and a perturbation θ
such that T = T0 + θ. We can link density and temperature variations through a
thermal expansion coefficient β = 1

V

(
∂V
∂T

)���
p

as follows

ρ′ = − ρ0 β θ . (2.6)

Doing this our equations of motion become, in terms of temperature,

Du
Dt
= − 1

ρ0
∇p − βθg + ν∇2u , (2.7)

25



Chapter 2. Theoretical review 2.3. Rotating flows

and
Dω

Dt
= (ω·∇)u − β∇θ × g + ν∇2ω . (2.8)

For an ideal gas it follows from the definition of β and the ideal gas laws that the
thermal expansion coefficient is given by β = 1/T0 (Batchelor, 1967).

Temperature is a scalar variable whose behaviour is coupled to that of the fluid.
In addition to advection, heat may also be redistributed through thermal conduction.
Both of these effects are combined in the following advection-diffusion equation
for heat,

DT
Dt
= α∇2T , (2.9)

where α is the thermal diffusivity.

2.3 Rotating flows
Equally interesting and important to the following work is the behaviour of a
rotating fluid. To analyse these flows we place ourselves in a frame of reference that
rotates relative to the inertial frame at a constant rate Ω. With some manipulation
equation (2.1) can be expressed in the rotating reference frame as

Du
Dt
= −1

ρ
∇p̃ + 2u × Ω + ν∇2u + F

ρ
, (2.10)

where all variables are now measured inside the rotating frame (Davidson, 2013).
The resulting centrifugal term has been incorporated into the pressure as p̃ =

p − ρ
2 (Ω × x)2.
The remaining term, 2u × Ω, is the Coriolis force; a fictitious body force that

manifests as a result of moving in a non-inertial frame. We see that this force will
always act in a direction perpendicular to motion in the rotating frame, deflecting
fluid from its current path. This effect is illustrated in figure 2.2. Two characters
are stood diametrically opposite one another on a rotating platform. One character
throws a ball to the other. When viewed in the inertial reference frame Ri the ball
travels in a straight line. It misses the receiving character who has, in the time it
takes for the ball to cross the table, rotated away from his original position. Viewed
in the rotating frame Rr the ball now appears to be deflected under the action of
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an invisible force causing it to move in a curved path. This force is the Coriolis
force. A key result is u · (u × Ω) = 0 indicating that the Coriolis force cannot do
any work when acting upon a fluid, it may only change its direction; it is, after all,
a fictitious force.

Ω

Ri Rr

Fig. 2.2 Cartoon illustrating effect of the Coriolis force

The corresponding vorticity equation to (2.10) is

Dω

Dt
= (ω·∇)u + 2 (Ω · ∇)u + ν∇2ω + ∇ ×

(
F
ρ

)
. (2.11)

An interesting effect of the Coriolis force in a rotating system is its ability to
act as a restoring force to perturbations, thereby making incompressible rotating
fluids a wave bearing system. These waves are known as inertial waves, reflecting
the fact that they are associated with rotational inertia. Taking the curl of the time
derivative of equation (2.11) results in, after neglecting viscous terms and some
manipulation,

∂2

∂t2

(
∇2u

)
+ 4 (Ω · ∇)2 u = 0 , (2.12)

which supports plane waves of the form u = û exp [i (k · x −ϖt)]. These waves
have a dispersion relation of the form

ϖ = ±2 (k · Ω)
|k| , (2.13)
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which results in the following phase and group velocities

cp = ϖk/|k2 | = 2 (k · Ω)
|k|3 k , (2.14)

and
cg = ∇kϖ = ±2k × (Ω × k)

|k|3 , (2.15)

from which we see that there is a limit on the frequency of inertial waves of between
0 and 2Ω (Davidson, 2013). Another key feature of inertial waves is that their
phase velocity (direction of propogation of wave crests) is perpendicular to the
group velocity (direction of energy propogation). This can lead to a variety of
interesting and sometimes unexpected behaviours.

As for any closed wave bearing system, it is possible to form standing or
stationary wave solutions. The most simple example of this for inertial waves is a
cylindrical cavity of fluid rotating at rate Ω about the axis. For an axisymmetric
cylinder of radius R and height H modal solutions can be formed consisting of a
Bessel function variation in the radial direction and sinusoidal variation in the z
direction. The Stokes stream function for a mode of the form (r, z) = (m, n) can be
written as

Ψm,n = A r J1

(
ζm

R
r
)

sin
(nπ

H
z
)

e(iϖm,nt) , (2.16)

where ζm is the mth zero of the bessel function J1. These oscillations have a
frequency of

ϖm,n =
2Ω√

1 +
(

Hζm
nπR

)2
, (2.17)

which we can see falls within the required range of 0 to 2Ω. Equation (2.16) can
then be used to find expressions for ωϕ, Γ, and u. A derivation of this solution is
provided in appendix A.

2.4 Axisymmetric buoyant vortex flow
We now turn our attention to the analysis of buoyant vortex flow. Combining the
previous results for both buoyant and rotating flows we obtain the overall governing
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equations

Du
Dt
= − 1

ρ0
∇p + 2u × Ω − βθg + ν∇2u , ∇ · u = 0 . (2.18)

with corresponding vorticity equation

Dω

Dt
= (ω·∇)u + 2 (Ω · ∇)u − β∇θ × g + ν∇2ω . (2.19)

One simplification we can make to aid the analysis of vortex flow is the
assumption of axial symmetry. If we adopt a cylindrical polar co-ordinate system
(r, ϕ, z) this states that there is no variation in properties with the azimuthal co-
ordinate ϕ. It then becomes useful to separate the (r, z) and ϕ components of
motion by performing the following poloidal-azimuthal decomposition,

up = (ur, 0, uz) uϕ =
(
0, uϕ, 0

)
.

Both the poloidal1 and the azimuthal velocity fields are solenoidal for axisymmetric
flows. Furthermore we note that the vorticity can be treated in a similar manner
and that, under the assumption of axial symmetry,

ωp = ∇ × uϕ ωϕ = ∇ × up .

Poloidal vorticity is associated with azimuthal motion and vice versa. We also
introduce at this point the Stokes stream function Ψ, defined through the poloidal
velocity and related to the azimuthal vorticity by

up = ∇ ×
(
Ψ

r
êψ

)
∇2
∗Ψ = −rωψ , (2.20)

where
∇2
∗ = r

∂

∂r

(
1
r
∂

∂r

)
+
∂2

∂z2 (2.21)

is the Stokes operator. This is a stream function used in axisymmertic cylindrical
co-ordinate systems. The contours of constant Ψ follow streamlines of the flow.

1In the geophysical context the poloidal term is often referred to as the meridional term.
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Extending the ideas of a poloidal-azimuthal decomposition further to the
equations of motion, the azimuthal component of equation (2.18) yields the
following advection-diffusion-like equation for specific angular momentum Γ = r uϕ
in the rotating frame

DΓ
Dt
= −2Ωrur + ν∇2

∗Γ . (2.22)

This is a statement for the conservation of angular momentum in the inertial frame.
The −2Ωrur term represents the action of the Coriolis force. As fluid moves radially
it experiences a tangential acceleration in the rotating frame necessary in order to
conserve angular momentum in the inertial frame. If we were to step back into the
inertial reference frame for a moment we could write the total angular momentum
as ΓTot. = Γ +Ωr2. It is then a straightforward exercise to arrive at equation (2.22)
and see how this term redistributes the intrinsic angular momentum.

In a similar manner, the azimuthal component of equation (2.19) can be
manipulated to give the following scalar equation for the evolution of azimuthal
vorticity

D
Dt

(ωϕ
r

)
=

∂

∂z

(
Γ2

r4

)
+

2Ω
r
∂uϕ
∂z

− βg

r
∂θ

∂r
+ ν

1
r2∇

2
∗
(
rωϕ

)
. (2.23)

On the left is the familiar material derivative, and on the far right is a viscous
diffusion term. The other terms may be slightly less familiar, however, and it is
worth taking the time to understand their effect. The first term on the right involving
axial gradients in angular momentum, ∂Γ2/∂z, represents the process of vortex
stretching. Axial gradients in azimuthal flow cause poloidal vortex lines to become
distorted such that they obtain a component in the azimuthal direction. This is
shown in figure 2.3 which illustrates why this process is often referred to as the
‘spiralling up’ of vortex lines (Davidson, 2013).

The second term on the left results from the curl of the Coriolis force, and can
be understood in a very similar way to the first. Application of the chain rule allows
the first two terms on the left to be re-written as

∂

∂z

(
Γ2

r4

)
+

2Ω
r
∂uϕ
∂z

=
2
r2

(
Γ

r2 +Ω

)
∂Γ

∂z
,
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Fig. 2.3 Cartoon illustrating the spiralling up of vortex lines

whereupon the similarity becomes more apparent. Axial gradients in azimuthal
flow again act to transfer vorticity from the poloidal to the azimuthal direction, but
this time it is vorticity due to the background rotation when viewed in the inertial
frame. This appears in the rotating frame as an action of the Coriolis force.

The remaining term results from the curl of the buoyancy force. We see that
radial gradients in temperature will act to generate azimuthal vorticity. This can be
illustrated through the toy problem in figure 2.4. Consider an initial setup with a
tank of water containing in one half warm, positively buoyant fluid, and in the other
half cold, negatively buoyant fluid. This gives a negative radial gradient in θ. When
released, the warm fluid will rise over the cold to establish a stable stratification as
illustrated. The energy released in doing this is converted into poloidal motion,
generating azimuthal vorticity.

z

r
ϕ

ωϕ

t0 t1 t2

Fig. 2.4 Cartoon illustrating the generation of azimuthal vorticity through
horizontal temperature gradients
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Chapter 3

Numerical methods

This chapter provides an overview of the numerical methods used in this study.
Motivation for a computational approach is given in section 3.1, followed by a
discussion of different techniques and justification for the chosen method (Marker
and Cell). An overview of the scheme is given in sections 3.2, containing a
discussion of the numerical method, and 3.3, which specifically addresses our
implementation and any modifications necessary for this study. Details of testing
and validation of the code are provided in section 3.4. Finally we give some
consideration to numerical accuracy in section 3.5 before summarising the work in
section 3.6, along with some suggestions for future development.
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3.1 Motivation
In order to study the phenomena in this body of work we decided to adopt a
numerical approach for simulating fluid flow. This allows repeated investigations
over a wide range of parameters to be performed with easy variation of the key
variables affecting behaviour.

A number of different options were considered, including commercial software
and in-house codes. It was found, however, that these were not ideally suited to
our applications and would have required extensive modification. It was also felt,
in some cases, that a lack of knowledge about the implementation of numerical
schemes could interfere with the physical processes that we were investigating
calling into question any scientific conclusions that might be made based upon
the results. Therefore a decision was taken early on to write a custom code that
would be capable of handling our specific applications. One aspect we paid
particular attention to was the implementation of boundary conditions, since these
are extremely important in the flows we shall be investigating. Often there is
numerical ‘sleight of hand’ when implementing boundary conditions in order to
simplify or speed up the code. Therefore it was important to seek a numerical
method that clearly discretises, and provides control over, the boundary conditions.
In addition to this we desire a numerical scheme that is not only reliable and
transparent, but also straightforward to implement. Since the focus of this study
is on understanding physical processes it was important not to get swept up in
the development of complex numerical schemes that add no value to the overall
conclusions.

A popular class of numerical methods for two-dimensional incompressible flow
are streamfunction-vorticity methods, so-called after the primary variables that they
model. These methods are attractive for their relatively simple implementation and
the reduced number of variables when compared to a pressure-velocity formulation.
This advantage is, however, lost when moving to three dimensions. The main
drawback to the streamfunction-vorticity approach lies in the implementation
of boundary conditions, which have to be reformulated in terms of vorticity
and streamfunction. This process becomes increasingly challenging for more
complicated conditions (Ferziger & Peric, 2002). In light of this we instead pursue
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a primitive variables approach (pressure and velocity) that will provide greater
control over the implementation of boundary conditions.

Investigations of axisymmetric swirling flow were performed by Harlow & Stein
(1974) in order to better understand columnar vortices. They used a numerical
method known as the Marker and Cell scheme (MAC). Although initially developed
for modelling free surfaces and tracking fluid motion (Harlow & Welch, 1965),
the internal dynamics of this code can be used to model a wide variety of flows.
The method is well documented in the technical reports from the Los Alamos
Laboratory where it was developed (Welch et al., 1965; Stein & Harlow, 1974).
A discussion of recent developments to the MAC scheme can be found in McKee
et al. (2004).

3.2 Numerical formulation
The MAC method that is used throughout the course of this work can be formally
classified as a finite-difference pressure-correction scheme (Chung, 2002) that
operates in primitive variables. Here we give a brief overview of the numerical
formulation behind the scheme, details for which can be found in Harlow & Welch
(1965), with a more extensive discussion in Fletcher (1997).

The algorithm takes the Navier-Stokes equation (2.1) and makes use of the
continuity equation (2.2) to re-write the non-linear convective derivative as follows

∂u
∂t
+ ∇ · (u ⊗ u) = −∇

(
p
ρ

)
+ ν∇2u , (3.1)

where [∇ · (u ⊗ u)] i = ∇ · (ui u). Note that, since the fluid is incompressible, the
density has also been taken inside the gradient operator. This is known as the
conservation form of the Navier-Stokes equation, and is a common approach in
the numerical solution of flows using primitive variables. Though mathematically
identical to the non-conservation form (equation (2.1)), there are differences
between the two when discretised for use in numerical methods. The advantage
of using the conservation form from a computational point of view becomes
apparent by considering a small volume, whereupon we find that, when discretised,
momentum is conserved across the volume. This analysis extends to a larger
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grid, with the discretised conservation form of the equations forming a telescoping
series and fluxes being conserved across the mesh. In contrast, a non-conservation
discretisation gains an additional term for each gridpoint and fluxes may no longer
be balanced. Using the conservation form when discretising reduces numerical
errors and the effect known as artificial viscosity. A more in-depth discussion about
the benefits of the conservation form can be found in Anderson (1995).

The MAC method proceeds as follows. Equation (3.1) is stepped forwards in
time based on values at a previous timestep (n) to give an estimation of a new
velocity at (n + 1):

un+1 − un

∆t
+ ∇ · (un ⊗ un) = −∇

(
p
ρ

)
+ ν∇2uuun . (3.2)

Taking the divergence of this gives

∇ · un+1 − ∇ · un

∆t
+ ∇ · ∇ · (u ⊗ u)n = −∇2

(
p
ρ

)
+ ν∇2 (∇ · un) . (3.3)

We now impose the requirement that the divergence of the updated velocity field be
zero in order to satisfy incompressibility. Rearranging then results in the following
Poisson equation for pressure

∇2
(

p
ρ

)
= ∇ · un + ∆t

(
−∇ · ∇ · (u ⊗ u)n + ν∇2 (∇ · un)

)
. (3.4)

Solving this yields an intermediate or ‘corrected’ pressure that can be used in
equation (3.2) to obtain the new ‘corrected’ velocity. This velocity will, within
numerical error, satisfy the incompressibility condition.

3.3 Numerical implementation
The MAC method was implemented from scratch using the FORTRAN program-
ming language. The code was developed incrementally, initially without body
forces before later adding in the effects of buoyancy and rotation. Since these
effects are not included in the original MAC scheme we had to implement them
ourselves. This section contains a discussion of how this was done, as well as
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highlighting some other important features of the numerical method such as the
mesh and boundary conditions. It also contains a discussion of the the structure of
the code.

3.3.1 Mesh and discretisation
The MAC method is implemented for an axisymmetric cylindrical polar co-ordinate
system on a staggered mesh. This name reflects the fact that different flow variables
are stored at different locations on the grid, as illustrated in figure 3.1. The poloidal
velocities ur and uz are defined at the faces of cells, as illustrated in figure 3.1,
whilst the other variables are defined at the cell centres. The main benefit to this
approach comes from the fact that pressure and velocity are coupled at adjacent grid
points, preventing the effect known as ‘checkerboarding’ whereby an oscillatory
solution manifests as the result of two separate solutions associated with alternate
gridpoints (Patankar, 1980; Fletcher, 1997). For simplicity the mesh used in our
simulations is always rectangular in the r − z plane, but includes the option for
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Fig. 3.1 Schematic of the staggered mesh
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refinement near the boundaries or in the centre using either quadratic or exponential
spacing.

The downside to using a staggered mesh is that it introduces some complexities
into the numerical implementation in terms of indexing and discretising, although
these can be overcome with due diligence. It also complicates the implementation of
boundary conditions since at least one dependent variable will always be undefined
on the boundary. To overcome this we use a layer of ghost cells outside our domain
indicated by the dashed lines in figure 3.1. By setting the values of the variables
for these cells appropriately we can ensure that the required conditions are satisfied
on the boundary for our discretised equations.

The equations themselves were discretised using second-order central differences
in space, and an explicit first-order difference in time. Details of this discretisation
for a two-dimensional Cartesian system can be found for in Welch et al. (1965),
along with a brief discussion of how it might be modified for two-dimensional
cylindrical polar co-ordinates (r, z). This formulation is developed in Stein &
Harlow (1974) for an axisymmetric domain with a uϕ component. None of these
equations contain buoyancy or rotation however, so these terms had to added into
the MAC equations and discretised, as discussed below.

A further change from the implementation used in Harlow & Stein (1974)
is that, rather than discretising the equation for azimuthal velocity, we instead
choose to re-write this component in terms of angular momentum (equation (2.22)).
The advantage of doing this is that the equations we have discretised are now
more rigorously conservative for angular momentum. A knock-on effect from this,
however, is that any uϕ terms in the other equations now have to be written in terms
of Γ.

Time stepping was performed using the forward Euler method as set out in
Welch et al. (1965). The advantage of using this scheme is that it is easy to
implement in our equations. The downside, however, is that it is only first order
accurate. This means that in order to maintain accuracy in our solutions we are
required to take smaller timesteps than might be afforded by other, more complex
timestepping procedures. However, since we are solving laminar flows and using
reasonably modest domains, this restriction should not be overly problematic. The
forward Euler method can be shown to be stable with a restriction on maximum
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timestep (Ferziger & Peric, 2002). It is worth noting here that there is a trade-off
in the MAC scheme with a smaller timestep speeding up each application of the
Poisson solver. This is because when stepsize is small, the pressure from the
previous timestep provides a good approximation to the new solution.

3.3.2 The Poisson equation
One of the more challenging aspects of writing this code came from solving the
Poisson equation for pressure 3.4. The standard approach is to implement an
iterative technique, although details in Welch et al. (1965) are sparse. Initially we
chose to use the tridiagonal matrix (or Thomas) algorithm (Hirsch, 2007), but this
was soon replaced by the Gauss-Seidel method utilising successive over-relaxation
to speed up convergence (Fletcher, 1997). More recently improvements have been
made by solving the Poisson pressure equation by using conjugate gradient methods.
This approach was implemented using the biconjugate gradient stabilised method
(BiCGStab) (Saad, 2003), but failed to yield any significant improvement over the
Gauss-Seidel method in our code. This is likely due to the fact that the pressure
from the previous timestep provides a good approximation to the new solution as
discussed above.

Although Poisson equations for pressure are often found in primitive variables
solvers, there is significant debate about the ‘correct’ boundary conditions. A
discussion of the different approaches can be found in Gresho & Sani (1987) and
Gresho (1991). We choose to adopt what we believe to be the most physically
grounded approach, with the boundary conditions obtained through the normal
projection of the discretised momentum equations onto the boundary.

For a domain with closed boundaries, such as we consider in this work, the
resulting boundary conditions for the pressure equation are Neumann (or second-
type). An issue arising from this is that the problem becomes singular, that is,
any solution to the Poisson equation with these conditions is indistinguishable by
the addition of a scalar constant. Although this is not a problem when solving
the equations of motion, since only the gradient of pressure is required, it does
become an issue when solving the Poisson equation numerically. This is because
the results from any iterative solver can float, or even diverge. To overcome this we
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enforce a compatibility condition on the domain. For a two-dimensional Cartesian
system this is Green’s integral theorem as described in Fletcher (1997). For an
axisymmetric domain with three velocity components we can extend this approach
to show that the compatibility condition is given by Gauss’ theorem. Enforcing this
as a small correction in our solver then allows it to converge to a solution.

Following development, the Poisson solver was tested on a number of prescribed
problems and compared to analytical solutions before being implemented into our
numerical scheme.

3.3.3 Boundary conditions
As we have already discussed, the implementation of boundary conditions was a key
focus in our numerical work. One of the appealing aspects of the MAC approach is
that it is relatively straightforward to write out the appropriate formulation for a
range of different conditions. The values of any variables that lie on the boundary
can be set exactly, for instance radial velocities at the radial boundary and axial
velocities on the upper and lower surfaces. For variables that do not lie on the
boundary the process is more challenging. We tackle this by setting their values in
the ghost cells that lie outside the domain. This is done in such a way that when
these values are inserted into the discretised equations they provide the correct
value or condition at the boundary of the domain.

One area we pay particular attention to is the axis. This can cause issues in
numerical codes due to singularities that can occur in any terms containing a 1/r

factor. The staggered mesh is, again, advantageous here, since the only variable
located directly on the axis is the radial velocity, ur , which we know must be zero
under axial symmetry. The remaining variables are then set in the ghost cells to
satisfy the axial boundary condition. The effect of the axis also becomes important
in the internal dynamics of the code whenever derivatives involve a factor of 1/r

on the axis. To tackle this the code has a separate routine for the I = 1 column of
cells near the axis to deal with these factors. The remainder of the domain is then
solved for using the standard discretisation.

In addition to the axis the boundary conditions must be specified at the upper,
lower, and radial boundaries. In our code these may be set to be either no-slip
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or free-slip. The no-slip boundaries can be specified to rotate at a constant rate,
different to that of the domain.

3.3.4 Buoyancy and rotation
Once we had a code that could solve the basic equations of fluid motion, the
next major undertaking was to implement the effects of buoyancy. To do this an
additional variable for the temperature was added. Rather than the total temperature
we use θ, the perturbation to a fixed background temperature T0 as described in
section 2.2. This is added to the discretised equations of motion, and must also be
included as a source term in the Poisson pressure equation as

∇ · (βθg) = −gβ
∂θ

∂z
. (3.5)

The addition of a temperature variable also requires the implementation of
the heat equation (2.9). This is performed using using a prognostic approach.
Following the solution of the equations of motion as described above, the discretised
form of equation (2.9) is advanced using the new values for the velocity field to
update the temperature field. It should be noted at this point that the temperature
and velocity equations are coupled, and therefore a change in one will affect the
other. As such, a more accurate approach would be to implement an iterative
scheme whereby the updated temperature is fed back into the velocity equation
in a loop until convergence is reached. A similar justification for the use of the
forward Euler timestepping routine, i.e. that the error will be negligible provided
the timestep is small, is used for the current implementation of the temperature
equation. However, if changes were made to the timestepping routine or larger
timesteps were used then this issue would require attention and an iterative loop
should be added.

For our particular application we extend our work on buoyancy a little further
to include a linear background stratification of the form dT0/dz = const., the
constant being negative (unstable stratification). In doing this a slight modification

40



Chapter 3. Numerical methods 3.3. Numerical implementation

is required to the temperature equation (2.9) such that it becomes

Dθ
Dt
= α∇2θ +

����dT0
dz

���� uz , (3.6)

where θ is now the perturbation to the background linear temperature profile T0 (z).
The final effect of adding a temperature field is that the boundary conditions have

to be modified accordingly. For the Poisson equation this involves the projection of
the buoyancy terms onto the boundary. It is also necessary to implement boundary
conditions for temperature which, due to our representation, require a little thought.
The most simple case is when there is zero stratification. A Dirichlet condition
θ = const. will specify a fixed temperature on the boundary, whilst a Neumann
condition, ∇θ · n̂ = const., specifies a fixed heat flux according to

q = −κ∇θ . (3.7)

When ∇θ · n̂ = 0 the Neumann condition specifies an adiabatic boundary.
Things become more complicated with the addition of stratification. The

Dirichlet condition still prescribes a constant temperature on the boundary, but
care must be taken to include the effect of the background temperature profile
with the temperature on the boundary now being Tb = T0 (zb) + θ. The Neumann
condition still prescribes a heat flux, but this is now augmented by the background
stratification as follows

q = −κ
(
∇θ + dT0

dz
k
)
. (3.8)

Care must be taken when setting the value of θ in the ghost cells so that the desired
boundary condition is being specified.

Another major addition to the numerical scheme was to implement background
rotation. As with buoyancy, this was done by introducing additional terms to the
discretised equations of motion as discussed in section 2.3. These changes result in
another source term in the Poisson equation for pressure, this time the divergence
of the Coriolis force

∇ · (2Ω × u) = −2Ω
r
∂Γ

∂r
. (3.9)
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Since the boundaries are in the rotating frame no modification is necessary to the
boundary conditions for u and θ.

3.3.5 Code structure
Throughout the development process particular attention was given to structure
and versatility. This made it easier to make changes at later stages and allowed
us to use the code to explore different configurations. Since this is a large scale
coding project we adopt a structured programming approach. This paradigm
involves breaking the code up into a number of separate tasks. Each of these is
then contained within a separate subroutine. By doing this it is possible to test the
operation of individual subroutines before their implementation into the rest of the
code. This was particularly beneficial when developing the Poisson solver.

Another benefit of this approach is that it makes it easier to modify the code at
a later stage. For example, the first implemntation of the MAC method used the
Thomas Algorithm to solve the Poisson equation. This was later replaced by an
improved solver using the Gauss-Seidel method. Thanks to adopting a modular
programming approach the new solver could be built and tested on its own. Once
completed it can then be called from the main program in the same way as the
previous solver with just a different function call.

The structured programming approach was also beneficial when using our
code for different applications, with the subroutines for setting initial conditions
and boundary conditions contained in a separate module. This means that when
investigating a different application, only this module needs to be changed; there is
no need to alter any of the core of the code. Continuing with this idea, all of the
program inputs for a particular run are read from a file, with the only parameter
passed directly to the program being the location of this file. This means that there
is always a clear record held of how the code was initialised for future reference.
Where possible the input is given in terms of dimensionless quantities, with only the
minimum number of dimensional quantities required to calculate the rest specified.

Figure 3.2 shows a flowchart of the code structure. Each box represents a
separate subroutine that is called to carry out a specific function. The name of the
subroutine is given in capitals, along with a brief description. The black routines
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are common to all simulations and remain unchanged between runs. The routines
in blue contain elements that are unique to a particular application of the code
and have to be written specifically, for example the initial condition and boundary
conditions. These blue subroutines are all contained within a separate file that is
selected at compile time.

The code starts by initialising the necessary variables and then calling a
subroutine called FILESX, which takes a directory name for the current simulation
from the user. After checking that this directory exists, the program creates an
output file called conv.dat which is used throughout the run to write information
such as the divergence, CFL number, and number of iterations of the Poisson
solver at each timestep. The program then reads in data from an input file and
calculates any other parameters that are required. This means that we have a record
of every simulation and can repeat them if required. Although not indicated on
the flowchart, there is the option to re-start the code from a previously saved point.
If this option is specified then the code would read in previously saved data and
go straight to the TIMESTEP subroutine re-starting from the saved point. In all
other cases the MESH subroutine is called that generates the staggered mesh for
the simulation and writes this data to file for future use. This is followed by the
INITIALISE subroutine that sets the internal values of velocity, pressure, and
temperature, applies the boundary conditions, and then writes the zeroth output file.

Once preparation is complete the code proceeds to the timestepping subroutine.
This loops repeatedly, performing one full timestep at each iteration. The subroutine
takes the properties at the previous timestep and uses them to construct the Poisson
equation for pressure. This information is then passed to the subroutine POISSON
which prepares the equations in sparse matrix form and applies the pressure
boundary conditions. The system is then solved by the Poisson solver in the
GAUSSEIDEL subroutine. After a solution is returned, the corrected pressure is
used to update the velocities for the current timestep and the boundary conditions
are again enforced. Once the new velocity field has been found, the TEMPUPDATE
subroutine performs a prognostic update of the temperature field. Before moving on
to the next timestep the code checks the CFL and Peclet numbers and the divergence
throughout the domain, terminating with an error message if these are outside an
appropriate tolerance. Finally information about the current iteration is written to
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Fig. 3.2 Flowchart showing the structure of the code
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the file conv.dat, and an output file is written (if required) with variable values from
the staggered mesh calculated at the cell corners.

Once the code has performed the required number of iterations, and the loop
over the timestepping subroutine is complete, FILESX is called again, this time to
safely close any files that were used for output. Once this is complete the program
terminates and a message is sent to notify the user.

All of the results presented in this work were carried out using the code described
above running on an OpenSUSE Linux system. The hardware consisted of a Dell
Optiplex 750 desktop PC with an intel core i5 processor and 4 gigabytes of random
access memory. Post-processing and analysis of the results was performed using
Python 2.7, with the Matplotlib package being used for visualisation.

3.4 Test cases and validation
Following the development of the code it is necessary to perform validation to
ensure that it works and produces physically realistic results. This section contains
a discussion of a number of different test cases that were performed using the code,
along with an explanation of what each demonstrates.

3.4.1 The self-destruction of an inviscid spherical vortex
An example from Davidson (2013), this test case takes the initial condition of
an isolated patch of azimuthal velocity and allows it to evolve. A poloidal flow
is induced that sweeps radially outwards causing the blob to burst under its own
centrifugal force and form an exponentially thinning vortex sheet. This process is
shown in figure 3.3. The initial condition is given by:

up = 0 , uϕ = Ωr e−(r2+z2)/l2
,

where Ω is a characteristic angular velocity, and l is the characteristic radius of the
Gaussian blob. The contours of angular momentum for this initial condition are
shown in figure 3.4a.
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Fig. 3.3 Image taken from Davidson (2013) showing the bursting of the spherical
vortex. The initial condition is shown in (a), whilst (b) shows how the induced
secondary poloidal flow sweeps the blob radially outwards. Eventually the blob

wraps up to form an axisymmetric vortex sheet (c).

(a) Ωt = 0.0 (b) Ωt = 2.5 (c) Ωt = 5.0 (d) Ωt = 7.5

(e) Ωt = 10.0 (f) Ωt = 12.5 (g) Ωt = 15.0 (h) Ωt = 17.5

Fig. 3.4 The evolution Γ for the bursting vortex

The purpose of this test case is to examine the internal dynamics of the code
without the effects of buoyancy or background rotation. It involves motion in all
three directions, has properties that can be monitored and compared to analytical
results, and develops in a distinctive way that can be qualitatively observed. This
test also provides a measure of code ‘quality’ in that, at some point, the exponential
thinning of the vortex sheet should cause the code to break down. Failure to do
so indicates the presence of unwanted and unphysical effects such as excessive
artificial viscosity acting to stabilise and force a result.

Figure 3.4 shows the evolution of angular momentum for the caseΩ = 0.5 rad s−1

and l = 0.2 m. We see that the evolution of the vortex in our simulations provides a
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Fig. 3.5 Variation of Γ for the bursting vortex

qualitatively good match to the solution shown in Davidson (2013). As a quantitative
measure of performance Davidson et al. (2007) show that angular momentum must
be conserved for the bursting vortex, even in the presence of viscosity. By tracking
the total angular momentum over the course of our simulation, plotted in figure
3.5, we see that there is a maximum deviation of ±10−12 % from the initial value
Γ0 over the course of the run. This provides quantitative support that the internal
dynamics of the code are working correctly and accurately.

3.4.2 The Bödewadt layer
The second test case investigates the flow between two coaxial bounded discs.
Rotating flow above a no-slip boundary leads to the development of a boundary
layer at the surface. The centrifugal component of pressure from the bulk flow
is imposed upon the boundary layer to drive a swirling radial inflow. In order
to satisfy continuity there is a weak axial flow upwards, away from the surface.
Bödewadt (1940) provides an analytical solution to the Navier-Stokes equations
for this case. The calculations may be found in Bödewadt’s original paper, and are
discussed at length by Greenspan (1968)

As an approximation to the flow described by Bödewadt we examine a cavity
with a rotating lid. The lid drives a rotating flow at rate Ω within the cavity, leading
to the development of a Bödewadt layer above the base. It is the velocity profile in
this layer that will be compared to the similarity solution tabulated in Bödewadt
(1940). Provided the cavity is sufficiently large in the radial direction that we can
neglect side wall effects away from the radial boundary, the velocity profile should
should match the analytical similarity solution. Figure 3.6 show a comparison of
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the numerical and analytical solutions for the three velocity components at the
lower boundary. We can see that they agree well.

The purpose of this test is to examine the behaviour at the boundaries and
the implementation of boundary conditions. At the lower boundary we have a
no-slip condition that gives rise to a boundary layer, whilst at the upper boundary
we have no-slip with an imposed rotation acting to spin up the flow. Successfully
generating the boundary layer matching the similarity solution for all three velocity
components confirms our formulation of the no-slip condition is working well and
is physically realistic.

3.4.3 The rising thermal
Another example from Davidson (2013), this test case is interesting since it also
serves as an illustration of the analogy between stratified and rotating fluids. We
consider the development of an isolated patch of heat, the motion of which is
governed by the equations of section 2.2. There is an analogy between these
equations and those that govern the poloidal motion of the centrifugally bursting
vortex discussed above. This can be seen if we replace the buoyancy term −βθ with
Γ2, and g with êr/r3. The bursting vortex generated poloidal motion as fluid was
driven radially outwards under the action of the centrifugal force. Here poloidal
motion is generated as warm fluid rises upwards under the action of the buoyancy
force. As a result we expect to observe qualitative similarities between the two test
cases. In addition to this a theoretical study by Davidson et al. (2007) analyses the
evolution of a Gaussian heat distribution and shows that the axial linear impulse of
the thermal, defined as L = 1

2

∫
rωϕ dV , must increase linearly in time.

We take the initial condition of a Gaussian buoyant blob as described in
Davidson et al. (2007),

u = 0 , θ = Θ e−(r2+z2)/l2
,

where Θ is a characteristic temperature and l is a characteristic lengthscale. This
is allowed to evolve freely under the action of the buoyancy force. The results
(temperature) are shown in figure 3.7. We see that there are indeed qualitative
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Fig. 3.6 Comparison of the numerical and analytical solutions for flow in a
Bödewadt layer.
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Fig. 3.7 Evolution of the temperature anomaly for the buoyant blob. τ is
dimensionless time.

similarities between this and the centrifugally bursting vortex with the centre
punching through and the sides wrapping up. The motion this time develops in
the axial direction, rather than radially, reflecting the change from êr/r3 to g. In
addition to qualitative features we also track the total axial linear impulse of the
fluid from rest to confirm that it does, indeed, scale linearly in time. This is shown
in figure 3.8.

This case serves to test the implementation of the buoyancy force and temperature
equation in our the numerical scheme.

3.4.4 The flow between co-rotating discs
As an extension to the Bödewadt layer that has already been discussed, this final
case serves to test the implementation of background rotation. We again consider
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Fig. 3.8 Evolution of dimensionless axial impulse for the buoyant blob. τ is
dimensionless time.

the flow between two coaxial plates, this time when both are rotating. If the plates
rotate at differential rates, the lower with angular velocity Ω and the top at Ω + ϵ
(ϵ > 0), then a flow pattern is set up with rotating boundary layers at both the upper
and lower surfaces. The lower boundary layer is similar to the Bödewadt layer
that has already been discussed, with radial inflow and axial outflow. The upper
boundary layer is the opposite, similar to a von Kármán layer, with a radial outflow
in the boundary layer, maintained by an axial inflow. Both the Bödewadt and von
Kármán layers are particular examples of the more generic phenomenon known as
an Ekman layer.

The flow between these layers can be analysed in a reference frame that rotates
with the lower boundary at rate Ω, as is done by Acheson (1990). By matching up
the equations for the upper and lower boundary layers we find that the motion in
the interior is given by

ur = 0 , uϕ =
1
2
Ωϵr , uz =

1
2
(νΩ)1/2 ϵ .

The boundary layers have a height of approximately δ = 4
√
ν/Ω (Davidson, 2013),

outside of which the flow should follow this solution.
We performed a simulation of the flow between differentially rotating discs,

initialised in solid body rotation and running until a steady state was reached. The
three velocity components as a function of height at a radius of 0.75R = 32.5 δ,
where R is the radius of the container, are plotted as black lines in figure 3.9. The
theoretical values for the interior of the flow are shown in red. The height of the
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boundary layers, δ, for the upper and lower surfaces is denoted by the dashed lines.
We see that outside the boundary layers the numerical and theoretical solutions
agree well, indicating that background rotation has been successfully implemented
in the code.

3.5 A discussion of numerical accuracy
As with any investigation, experimental or numerical, it is important to have some
appreciation of the sources of error and uncertainty. There are a number of measures
built into the code to monitor and maintain accuracy.

The use of explicit integration in time results in a Courant–Friedrichs–Lewy
(CFL) condition on the maximum timestep in order to maintain stability. This can
be written in the form

C =
|u| ∆t
∆x

≤ Cmax , (3.10)

where Cmax depends on the numerical scheme. For explicit schemes this is typically
1, although in practice smaller values are often used. The principle behind this is
that information travelling at velocity u can propagate at most one grid point at each
timestep. The CFL number is checked throughout the domain at each timestep in
our code to ensure that it is below the maximum value, with the code terminating
if it becomes too large. Simulations that violate the CFL condition can be re-run
with a reduced timestep.

A similar stability condition exists for the heat equation. This can be expressed
in terms of a diffusion number (Patankar, 1980) as

D =
α∆t
∆x2 ≤ Dmax , (3.11)

where Dmax is typically 1/2. When this is exceeded solutions of the temperature
field can develop oscillations on the mesh. This condition places a serious limit on
the maximum timestep as a function of the mesh size and thermal diffusivity. Like
the CFL number, this criterion is checked at each timestep in our code.

Another issue we need to be aware of is artificial viscosity or false diffusion.
This is a phenomenon whereby the viscosity in a numerical simulation varies from
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Fig. 3.9 Velocity profiles between the spinning discs as a function of height at a
radius of 0.75R
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that which is prescribed, increasing by an unknown amount at different locations.
The effect arises primarily due to the fact that finite difference schemes treat
the flow as locally one-dimensional across cell faces, i.e. velocities with both r

and z components are broken up and each component treated separately. This
is a significant problem when modelling high speed or inviscid flow since many
phenomena (e.g. shock waves) are disrupted by the addition of viscosity. For
viscous flows it is less of an issue provided any artificial viscosity is small relative
to the prescribed viscosity. The effect may reduced by using a more refined mesh,
although this introduces restrictions on the time step and computational resources.
Ensuring that the divergence throughout the mesh is small at each timestep, as
we do in our code, helps to reduce artificial viscosity. It is also beneficial, where
possible, to align the grid with the direction of the flow. An extended discussion of
artificial viscosity, including an estimation of magnitude, can be found in Patankar
(1980).

Another source of error in our numerical scheme is the finite accuracy to which
the Poisson equation is solved. This is directly related to the accuracy to which
zero divergence is enforced. As with all iterative solvers we do not solve for an
exact solution, but rather continuously approach the solution until the change due to
further iteration is deemed sufficiently small. To do this the maximum difference at
each iteration is recorded and compared to a specified tolerance. Usually this was
of the order of 10−6 which was found to give reasonable accuracy whilst not taking
excessively long to converge. Double-precision format was used for all variables
throughout the code to provide maximum accuracy.

In order to monitor performance a number of variables are output to a conver-
gence file at each timestep. These include the maximum CFL and diffusion numbers
for the flow, the number of iterations to solve the Poisson equation, and both the
average and maximum divergence. By monitoring these residuals we can check that
the code is performing to a suitable level of accuracy and locate any potential issues
that may have arisen during the course of a simulation. In addition to monitoring
these residuals, we also perform spatial and temporal resolution studies for all test
cases and applications. This involves increasing the mesh resolution and decreasing
the timestep and repeating simulations. If the results are the same, to within a given
tolerance, then the the resolution and timestep are deemed sufficiently accurate.
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3.6 Summary
We have selected and implemented a numerical scheme (MAC) suitable for
simulating axisymmetric laminar flows with swirl. The scheme was selected for
its ease of implementation and clearly formulated boundary conditions. The main
developments to the MAC scheme that we have made are the addition of the
buoyancy and rotational body forces to make it suitable for our applications. We
have also implemented a prognostic form of the heat equation to account for thermal
conduction. We are concious that this study is not primarily a numerics project,
and that the development of this code is necessary step on the way to investigating
and understanding our flows of interest. Nonetheless, it is important that this
is done well in order for any results to be meaningful and reliable. Therefore
we have given thought to the structuring and implementation of the numerical
routine, and discuss aspects relating to numerical accuracy. The code has been
evaluated at each stage of development using a series of test cases, usually a
involving comparison of numerical solutions and analytical results. These tests
were performed to confirm that our code produces physically realistic results before
we progress to new investigations.

As discussed, the code is written to a level at which we can perform numerical
simulations of the phenomena we were investigating and obtain reliable results.
However, given further time to develop the code for its own sake there are a number
of additional features that might be included to improve performance. These are
listed below ordered roughly from least to most complex along with brief discussion.

• Adaptive timestepping. This would allow the code to proceed more rapidly
through initial transients or periods of little change. It would also allow for
the timestep to be reduced when high gradients form, allowing simulations
to proceed instead of causing the code to terminate.

• Improved output. At present the output of the code is stored as a text file
which is relatively inefficient and leads to large amounts of storage space
being required. Storing this data as binaries would reduce filesizes and be
much more efficient. These can still be read into python for post-processing
using appropriate function libraries. Alternatively we might use the NetCDF
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data format. This is an efficient way of storing data and can easily be read
by multiple platforms and programs. The self-describing nature of NetCDF
helps prevent errors during post-processing and analysis.

• Improved Poisson solver. We discussed how our solution of the Poisson
equation using the Gauss-Seidel method performs well due to the small
timesteps used. If we decided to proceed with adaptive timestepping we
might find that the BiCGSTAB routine becomes significantly more efficient
at larger timesteps.

• Dynamic memory allocation. At present our code has fixed sizes of arrays
independent of the mesh size of the simulation. By developing it to have dy-
namic memory allocation simulations would become more efficient, running
faster and using less RAM.

• Iterative temperature solver. As discussed in section 3.3.4, ideally the code
should involve an iterative scheme due to the coupled nature of velocity and
temperature. It would be good to implement this in a future version of the
code to increase confidence in the results. This is especially true if a new
timestepping scheme were to be developed that allows for larger timesteps.

• Parallelisation using OpenMPI. Since our code involves repeated looping
over large arrays we might seek to implement parallelisation in order to speed
it up. The main issue with this is that the slowest part of the code, the Poisson
solver, uses an algorithm that cannot easily be parallelised. We found that
Gauss-Seidel with successive over-relaxation gave a better performance than
a parallelised version of the slower Thomas algorithm. Since its development
we have become aware of red-black methods, however, which would allow
the our Poisson solver to be re-written for parrallel implementation.

• Improved timestepping scheme - Runge-Kutta. At present we are using the
forward Euler timestepping scheme due to its ease of implementation. To
maintain an appropriate level of accuracy this requires small timesteps. A
beneficial yet significant undertaking would be to implement a more robust
timestepping scheme. We suggest a Runge-Kutta scheme, ideally fourth

56



Chapter 3. Numerical methods 3.6. Summary

order which offers a good balance between accuracy and computation. This
would be more accurate than the forward Euler scheme and allow a larger
timestep to be used.
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Chapter 4

Eye dynamics of atmospheric
vortices

This chapter investigates the process of eye formation in atmospheric vortices. We
begin with a discussion of the internal structures that form at the centre of vortices,
reviewing observations and experiments from a number of different fields. This
includes examining some existing explanations for how and why these structures
form, evaluating their merits and flaws, and also their similarities and differences.
Particular attention is paid to the role of azimuthal vorticity in these theories.

To investigate the process of eye formation we consider a simple model of
axisymmetric rotating convection in a cylindrical domain. By performing a series
of simulations we confirm that it is possible to form an eye using this set-up and
investigate its nature. In addition to these results we also include a discussion of
the model and how it compares to a real atmospheric vortex.

Our investigations find that, as the thermal forcing is increased, the vortex
undergoes a Hopf bifurcation from a state with a steady eye to one in which the eye
oscillates. Examining the nature of these oscillations we propose that this behaviour
results from an inertial wave trapped in the eye. We posit that this mechanism could
perhaps be responsible for high frequency oscillations that have been observed in
tropical cyclones.

The work of this chapter appears, in a reduced form, in Atkinson et al. (2019).
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4.1 The literature on eye formation

4.1.1 Some definitions
The subject of eye formation - the development of a region of reversed (or subsiding)
flow, localised to the central axis of a vortex - is a particularly interesting problem.
It has attracted the attention of geophysical fluid dynamicists for a long time, with
an early discussion by Morton (1966). The phenomenon is perhaps most widely
recognised in the weather system known as the tropical cyclone but, as we saw in our
review of atmospheric vortices in section 1.2, similar flows have also been observed
in columnar vortices such as dust devils (Sinclair, 1973), waterspouts (Golden,
1974), and perhaps also tornadoes (Snow, 1982). Although many observations of
the phenomenon have been made, there is still a lack of fundamental understanding
as to how or why it forms. A number of different theories have been proposed
but the topic remains strongly debated - see the heated exchange between Pearce
(2005b,a) and Smith (2005).

There are a variety of definitions for terms such as ‘core’, ‘eye’, and ‘eyewall’
across different fields which can lead to confusion. Therefore we begin by clearly
defining the terms that we shall use in the discussions that follow. We concern
ourselves with flows in which the primary motion takes the form of intense swirling
flow about some central axis. Such flows often display a secondary poloidal flow
consisting of an overturning circulation in the r-z plane, streamlines for which
can be seen in figure 4.1. This overturning circulation flows inwards at the base,
converging on the axis before rising upwards and then exiting radially outwards

r

zEye

Fig. 4.1 Poloidal streamlines of a generic atmospheric vortex.
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Fig. 4.2 Schematic showing streamlines of the poloidal flow at the centre of a
typical atmospheric vortex. Blue regions indicate negative ωϕ.

giving positive azimuthal vorticity. Centred on the axis is a weaker region of
recirculating flow denoted by the dashed streamlines. Focusing in on this we define
the eye as a region of weak, recirculating flow at the centre of the vortex. This is
labelled in figure 4.1.

Although the bulk flow has positive azimuthal vorticity, the eye is a region of
negative vorticity, surrounded by an eyewall which we define as an intense sloping
annulus of negative azimuthal vorticity (the reasons for which will soon become
apparent). Another common feature to all of the vortices is the presence of a
lower boundary layer which is, as we shall come to see, important in the process
of eye formation. This boundary layer can be viewed as a source of negative
azimuthal vorticity. These features are shown on the diagram of figure 4.2 where
blue indicates regions of negative ωϕ. Now that we have a clear image and set of
terms we can begin to explore the existing work on this subject.

4.1.2 Eye formation in columnar vortices
A good starting point for this work is the review of geophysical vortices by Morton
(1966) which contains not only a qualitative discussion of phenomena, but also
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a detailed analysis using the principles of fluid dynamics. A scaling analysis for
different vortices suggests that there are several classes of behaviour depending
on the relative effects of rotation, buoyancy, and inertia. This indicates that the
key dimensionless parameters might be the Rossby number, Reynolds number,
and Froude number. An equivalent group that we shall adopt in much of our
research, however, is the Ekman, Reynolds, and Prandtl number. Morton notes
that geophysical vortices span a wide range of Rossby numbers, remarking that, in
some cases, it might be more useful to consider the local rotation in a vortex rather
than the background rotation, especially in the intense core. Morton completes his
review by posing a number of open questions:

• is axial downflow a common feature in geophysical vortices - indeed, is it a
possible feature?

• what is the relative importance of buoyancy in driving vertical flow in the
core?

• what is the importance of the lower boundary layer that converges towards
the axis where the flow then ascends?

questions that we shall see are still relevant today.
Following on from this we come to some early investigations into columnar

vortices by Maxworthy (1972, 1973). The first of these considers the internal
structure of columnar vortices using an experimental approach, with flow between
spinning discs driven along the axis by a propeller. An unexpected flow structure
was observed at the base of the vortex with reversed flow along the axis (figure
4.3). Maxworthy calls this a vortex jump, and believes it occurs in order to match
the flow emerging from the boundary layer to the external field. He cites the
work on vortex breakdown by Benjamin (1962) proposing that this may be a
matching of super- and sub-critical flows. He does, however, acknowledge that
there are differences between this flow and the work of Benjamin, in particular
the presence of a boundary. Despite these differences the use of the term ‘vortex
breakdown’ to describe the structures of figure 4.3b has, perhaps misleadingly,
become commonplace amongst subsequent authors.
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(a) Flow pattern observed (b) Dye visualisation of the lower
flow. The image on the right is a
higher intensity flow than on the

left.

Fig. 4.3 Results taken from Maxworthy (1972)

Building on this work Maxworthy (1973) looks at sources of vorticity in
columnar vortices. He demonstrates how a vortex advected by the wind is capable
of sweeping up boundary layer vorticity into the vertical through vortex stretching
so as to sustain itself. This theory is supported by some field observations of dust
devils. Importantly the study demonstrates an awareness of the boundary layer as a
vorticity source, and that boundary layer vorticity can be advected and stretched
by a flow to alter itself. The author focuses on vertical vorticity, however, not
considering the effect that other components might have.

The work of Maxworthy proved highly influential in the study of columnar
vortices in the atmosphere, particularly tornadoes. Snow (1982) provides an
in-depth review of the structure and behaviour at the core of tornadoes. He begins
by noting that the most appropriate approach to studying these flows is through
vortex dynamics, and that vorticity can only be generated by regions of high shear
like the boundary layer. He also notes that vortex lines in the boundary layer
will form shallow, nearly circular spirals, in contrast to the vertical lines of the

62



Chapter 4. Eye dynamics 4.1. The literature on eye formation

(a) (b) (c)

(d) (e) (f)

Fig. 4.4 Transition of core flow with increasing swirl from (a) to (f) taken from
Snow (1982)

main vortex. The majority of the review is spent discussing the process of core
evolution based upon the laboratory experiments of Maxworthy (1972) and Church
et al. (1979), and numerical work of Rotunno (1979, 1980). Snow notes that
these investigations can be a controversial topic, with clear differences to natural
phenomena. Nonetheless they have succeeded in providing insight in to a number
of aspects of tornado dynamics. The most significant conclusions to be made from
these investigations concern the transitioning of the core flow between a number of
different configurations as the azimuthal velocity (swirl) at the centre of the vortex
increases. These are illustrated in figure 4.4.
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For the case of no (or very low) swirl, the flow resembles a converging corner
flow that ascends over a broad area. As swirl is increased, the fluid conserves
angular momentum and forms a concentrated core as it ascends, approximately in
cyclostrophic balance. The maximum axial velocity occurs at the centre (figure
4.4a). As swirl is increased a disturbance develops on the axis, believed to be in
response to the axial pressure gradient. Several authors note that this behaviour
is reminiscent in appearance of vortex breakdown discussed by Benjamin (1962).
Eventually the lower breakdown point descends towards the surface forming what
is described as a ‘drowned vortex jump’ (figure 4.4c). This is clearly visible
in experiments, and is also thought to be seen at the base of dust devils and
waterspouts. It has been hypothesised that the drowned jump could give rise to a
series of standing waves along the core as illustrated in figure 4.4c. Though these
waves are described by Snow as ‘centrifugal’, they are a form of standing inertial
wave in a flow as described by Batchelor (1967) and Davidson (2013). Once the
disturbance reaches the surface a two-celled vortex forms, with downflow along the
axis surrounded by an annulus of rapidly ascending flow (figures 4.4d and 4.4e).
Eventually, at the highest levels of swirl, three dimensional instabilities result in
the breakup of the flow into a number of smaller vortices (figure 4.4f).

An important point to note here is that the flows in figures 4.4a and 4.4b
display radial outflow at upper levels, whilst the experiments and numerical work
they are based upon often have axial flow at the upper boundary. This difference
could have a significant effect on the flow through changing the axial gradients in
angular momentum. Snow reiterates that although vortex breakdown appears in
both numerical and laboratory experiments, it has yet to be conclusively observed
in nature. The structures seen at intermediate levels of swirl do resemble dust
devils and waterspouts, however, and the results at high swirl are not dissimilar to
tornadoes. He concludes his review by highlighting areas for future work. These
include the evolution of core structure; determining if vortex breakdown occurs in
nature, or whether it is an experimental feature; the presence and intensity of the
downdraft at the centre; and asymmetries and waves in the core and funnel.

Taking a closer look at the numerical work that heavily influences Snow’s
review, we come first to two investigations by Rotunno (1977, 1979). Both use
an axisymmetric cylindrical domain with axial flow at the top, and a swirling
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radial inflow at the base. The first of these (Rotunno, 1977) uses a free-slip lower
boundary in an effort to remove the influence of boundary layer vorticity and isolate
the behaviour of the upper vortex. Typical results can be seen in figure 4.5. As the

(a) Intermediate flow

(b) Steady state

Fig. 4.5 Streamfunction Ψ, angular momentum Γ, and azimuthal vorticity (here
designated as η) taken from Rotunno (1977)

flow converges towards the centre angular momentum is approximately conserved,
with the largest values at the centre of the vortex. The free-slip condition at the
base gives ∂Γ/∂z |z=0 = 0. Above this the contours of angular momentum have a
rightward slant meaning that only negative azimuthal vorticity can be generated
through ∂Γ2/∂z in equation (2.23). This leads to the development of a sloping
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region of negative azimuthal vorticity, i.e. an eyewall1, which, in turn, leads to a
region at the centre of the vortex that Rotunno describes as a ‘downdraft’. The
results are compared to laboratory measurements by Ward (1972), and found
to agree well in predicting core size and surface pressure dependence on swirl.
However, one should be wary of the results of this investigation. Although they
match laboratory results well, the effects of an overturning boundary layer flow
that generates positive azimuthal vorticity through ∂Γ2/∂z > 0 are absent as a
result of using a free-slip boundary. As was remarked by both Morton (1966)
and Maxworthy (1973), we expect the influence of the lower boundary layer to
be important in determining the properties of the vortex, so removing the no-slip
condition is likely to significantly affect the entire flow rather than simply isolating
certain features as intended.

Throughout his work Rotunno is critical of a similar study by Harlow & Stein
(1974). His main issue is that their inlet boundary condition does not fix the
azimuthal vorticity at inlet, making it difficult to analyse any effect this may have
on the flow, and limiting how realistic it might be. Indeed, Harlow & Stein make no
reference to azimuthal vorticity in their analysis, and any effects are to be inferred
by the astute reader. They use an axisymmetric, cylindrical domain with a swirling
radial inflow at the base. The main difference between this and the model of
Rotunno is that the outflow is located at the top of the radial boundary. Harlow
& Stein believe that this is closer to the conditions in a real atmospheric vortex
than the models with axial outflow. This configuration forces the streamlines to
completely overturn at the top as illustrated in figure 4.6. As a result a region
of negative ∂Γ/∂z forms towards the top of the vortex that, in turn, leads to the
development of an eyewall and eye. This can be seen in the results in figure 4.6. As
azimuthal velocity increases the eye strengthens.

Harlow & Stein do not make use of vortex dynamics in their discussion, instead
explaining the formation of the eye by balancing the axial pressure gradient along
the axis against shear stresses at the edge of the eye. This provides a correlation
between core length and swirl, but is not particularly rigorous in its derivation.
They also note that there is a minimum Reynolds number required for eye formation

1Rotunno calls it a ‘core wall’.

66



Chapter 4. Eye dynamics 4.1. The literature on eye formation

Fig. 4.6 Streamfunction for different values of swirl (increasing left to right and top
to bottom) taken from Harlow & Stein (1974)

based upon the radial velocity. They suggest that this critical value lies in the range
25-50.

An interesting observation made during these investigations is that, for large
Reynolds numbers, the eye can display oscillatory behaviour. This is illustrated
in the streamline plots of figure 4.7 showing the flow at different times. There is
little discussion of the phenomenon, other than to observe its occurrence, but one
might ask what the origin of these oscillations is and whether they might be related
to the standing waves discussed by Snow (1982) and Rotunno (1979) (see below).
Oscillations have also been reported in tropical cyclones by Chen et al. (2015)
who provide a description of high frequency fluctuations observed within the eye.
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Fig. 4.7 Plots of streamfunction showing the oscillation taken from Harlow & Stein
(1974)

These display similarities to oscillations reported by Harlow & Stein (1974) with
a fluctuation of vertical velocity within the eye. We might ask if the oscillations
observed in each of these cases occur as a result of the same mechanism, and what
this mechanism might be.

In addition to their main configuration Harlow & Stein also briefly examine the
effect of changing aspect ratio, a no-slip condition at the lower boundary, and an
axial outlet at the top of the domain. This is little more than an exploratory exercise
with limited discussion, although they do observe that a no-slip lower boundary
with axial outlet qualitatively reproduces the ‘vortex jump’ observed by others. Of
note, however, is the observation that an axial outlet causes the eye to disappear.
This is not entirely unexpected, as doing this removes the overturning streamlines
and the effects of ∂Γ/∂z.

The nature of the outlet is one of the key differences between these investigations
and the work of Rotunno. For the majority of Harlow & Stein’s simulations the
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flow is forced to completely overturn, with both the inlet and outlet on the radial
boundary. In contrast, all of the simulations performed by Rotunno have an axial
exit at the upper surface. By not forcing this overturning the azimuthal vorticity
at the centre of Rotunno’s vortex could be positive or negative depending on the
relative strengths of the swirl and the boundary layer, and an eye may or may not
form. This effect can be seen by comparing the streamlines in figures 4.5 and 4.6.
Few solid conclusions can be drawn from these results, since they are all one-off
cases rather than an exhaustive investigation, but they demonstrate that the internal
structure is complex, and sensitive to a number of different parameters.

The no-slip boundary is explored in more detail by Rotunno (1979), building on
his previous work. He observes that, for the case with no swirl, the flow converges
on the axis, with an adverse pressure gradient causing boundary layer separation.
As swirl is increased, the centrifugal pressure of the main flow is imposed upon the
boundary layer resulting in a favourable pressure gradient that prevents separation.
Azimuthal vorticity is also observed to be large and positive near the axis as flow
emerges from the boundary layer into a region with strong positive ∂Γ/∂z. A
structure develops on the axis matching the vortex breakdown observed in the
experiments of Maxworthy (1972) and simulations of Rotunno (1977). Rotunno
defines this as ‘an abrupt change in the structure with very pronounced retardation
along the axis and a corresponding divergence of the stream surfaces near the
axis’. He performs a mathematical analysis, following Benjamin (1962), and
concludes that at the breakdown the flow transitions from being supercritical to
critical, supporting the theory that this is vortex breakdown in the classical sense.
He also observes standing waves and an indication of transition to turbulence in the
recirculation. This is expanded upon in a later paper (Fiedler & Rotunno, 1986),
where the super- and sub-critical nature is computed in detail and the conditions
required for breakdown given.

A related paper (Rotunno, 1980) considers in depth the vorticity dynamics of
the swirling boundary layer. The equations of motion are solved in the absence
of viscosity for a boundary layer profile prescribed at the inlet. In the absence of
swirl Rotunno notes that the boundary layer from the plate is “. . . continued into an
axial boundary layer . . . ” as the negative azimuthal vorticity of the boundary layer
is swept upwards. This ‘axial boundary layer’ of negative azimuthal vorticity is
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similar to our definition of an eye wall as an ascending region of negative azimuthal
vorticity.

With the introduction of swirl, advection and vortex stretching through the
∂Γ/∂z term results in positive azimuthal vorticity being generated as vortex lines
emerge from the boundary layer spiral up. The effect of this is to reduce the amount
by which axial velocity is slowed in the centre of the vortex. As swirl is increased
further the azimuthal vorticity can become positive, resulting in what Rotunno
describes as ‘an axial jet’. These results are compared to the earlier numerical
simulations and are found to agree well on a number of aspects, but break down
when the swirl becomes large and axial downflow is observed.

4.1.3 Eye formation in tropical cyclones
Also making use of the ideas of Morton (1966) are members of the tropical cyclone
community. Putting forward a theory on the contentious topic of eye dynamics,
Smith (1980) argues that the ideas of Morton can be readily applied to disklike
vortices as well as columnar ones. He notes that at the centre of the tropical
cyclone the effects of buoyancy are significant, but that the Rossby number will be
large. In a similar manner to Harlow & Stein (1974), who explained eye formation
by balancing an axial pressure gradient against vertical shear, Smith proposes a
mechanism in which the axial pressure gradient approximately balances buoyancy.
Vertical motion, or subsidence, is then a second-order effect driven by any slight
imbalance in equation (4.1):
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Taking the flow near the centre to be in cyclostrophic balance, and noting from
observations that azimuthal velocity decays with height, an axial pressure gradient
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Smith proposes that as the cyclone intensifies this developing pressure gradient
forces subsidence at the centre. The subsiding air warms, producing the cloud-free
eye, and eventually balances the pressure gradient causing vertical motion to cease.
He states that in a balanced state subsidence may still be present due to sinks of
buoyancy in the eye leading to a slight imbalance. To finish, Smith notes that in the
absence of buoyancy there would be no balance in this system and we would expect
a two-celled vortex with axial downflow, though he does not elaborate on this.

Eye dynamics, being as contentious as they are in the tropical cyclone community,
resulted in Smith coming into conflict with fellow meterologist Pearce in a series
of articles in Weather (Pearce, 2005b; Smith, 2005; Pearce, 2005a), backed up
by papers (Pearce, 1998, 2004; Smith, 1980). In these, Pearce puts forward a
somewhat flawed model of the tropical cyclone based on a number of incorrect and
unphysical arguments. He does, however, raise some notable points that should
not be overlooked. The first of these is his consideration of azimuthal vorticity
in the flow; how it arises, and its influence. Rather importantly, he appears to be
the first author to place a more definite definition on the term eyewall as ‘. . . a
region of negative azimuthal vorticity in the flow bordering the eye. . . ’ which
we have adopted. Pearce believes that the negative vorticity in the eyewall is
generated by vertical shear through the process of ‘vortex-tilting’. This is vortex
stretching by ∂Γ/∂z that converts poloidal vorticity into azimuthal. His model
bears a number of similarities to that of Rotunno (1977), perhaps most notably in
its discussion of this effect. Both ignore the lower boundary layer, with a conical
eyewall developing through axial gradients in Γ. In his rebuttal to Pearce, Smith
(2005) states that the negative azimuthal vorticity of the eyewall in fact has its
origins in the boundary layer. Smith does not pursue this statement any further
however, perhaps not recognising the relevance or importance of the boundary layer
and its azimuthal vorticity. This is addressed, however, by Oruba et al. (2017) who
revise the arguments of Pearce as we now discuss.

Putting forward an alternative argument for eye formation, Oruba et al. (2017)
present a study in rotating convection inspired by tropical cyclones. They perform
numerical simulations of a rotating ‘petri dish’ driven by heating at the lower surface.
They find that, under certain conditions, an eyewall and eye can be generated near
the axis (figure 4.8). The eyes in their study are similar to those observed by Harlow
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Fig. 4.8 r-z plot of poloidal streamlines showing a vortex with an eye taken from
Oruba et al. (2017)

& Stein (1974) for columnar vortices, forming as streamlines overturn near the
upper boundary. Oruba et al. include analysis to show that, when the streamlines
completely overturn, there can be no net azimuthal vorticity production by the
∂Γ/∂z term. As a result they conclude that the negative vorticity of the eyewall
must have its origins in the lower boundary layer. They also show that in the vicinity
of the eye the contributions to azimuthal vorticity from the buoyancy and Coriolis
forces are negligible. This might call into question the theory presented by Smith
(1980), although it must be remembered that the simulations of Oruba et al. are a
simplified model, not a full tropical cyclone, and as such they lack certain effects
such as latent heat release.

The results of Oruba et al. (2017) indicate that there is a critical Reynolds
number required for eye formation to occur in their system. Below this, diffusion
processes will smear azimuthal vorticity throughout the flow before it can form a
strong eyewall. Only flows fast enough to advect vorticity up into the eyewall at
strengths that allow diffusion into the eye via a Prandtl-Batchelor process produce
eyes. Oruba et al. (2017) propose a critical Reynolds number of 37 when using
a similar definition to Harlow & Stein who suggested that the critical value lies
in the range 25-50. There is no explicit mention of the effect of swirl in the
investigations; azimuthal velocity is set up by the Coriolis force and, as a result,
cannot be controlled directly. Although they show that there is no net vorticity
production in the flow due to axial gradients in Γ, the relative strength of these
gradients could still impact eye formation as in the investigations by Rotunno (1980).

4.1.4 Summary of the literature
To summarise, we have considered two fields of research that have diverged
following the original review of geophysical vortices by Morton (1966). Both of
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these communities (columnar and disklike vortices) have covered some similar
ground when looking at the internal structure of vortices, but there are also notable
differences in their approaches. One of the largest differences is that the columnar
vortex community frequently makes much use of simple models and the principles
of fluid mechanics, whilst the tropical cyclone community generally favours large
complex models. Despite this we have seen that the arguments based on azimuthal
vorticity by Pearce (2004) for tropical cyclones and Rotunno (1977) for tornadoes
are, in fact, very similar. The work of Oruba et al. (2017) has begun to bridge
this gap by providing a simplified model of the tropical cyclone and a theory for
eye formation that contains similar elements to the work of both Rotunno (1980)
and Pearce (2004). We seek to extend this by asking what additional features this
model might show us, and what it might be able to tell us about the similarities
between different types of atmospheric vortex.

Based on previous works we define the eye as a recirculating region of negative
azimuthal vorticity at the centre of a vortex. This is bounded by a sloping annulus
of negative vorticity which we call an eyewall. These features are common to a
number of previous experiments and simulations, perhaps most notably the work of
Pearce, Rotunno, and Oruba et al.. Although these structures have been observed
in a variety of atmospheric vortices, there are a number of different theories as to
how and why they form. There is, at present, no clear consensus or favoured theory
with many overlapping ideas and alternative explanations.

The process of eye formation is most easily examined, we believe, through the
paradigm of vortex dynamics. We believe that the the overturning of streamlines
and ∂Γ/∂z at the upper levels of the vortex are key. In addition to this, it appears
that the lower boundary is important as a source of negative azimuthal vorticity.

Finally we note that the eye-like structures in both columnar vortices and tropical
cyclones have been observed to undergo oscillations. Although these observations
have been recorded, there is little discussion of the mechanisms by which they are
driven.
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4.2 A simple model to explore eye formation in disk-
like vortices

Like Oruba et al. (2017), we consider a shallow, cylindrical (r, ϕ, z), axisymmetric,
domain of height H and radius R. The domain has solid boundaries; free-slip at
the upper surface and no-slip at the base and side. Both the base and the side wall
rotate at a constant rate Ω. The choice of boundary condition at the side might be
immediately intuitive and this topic will be discussed later in section 4.6.2. There
is a prescribed heat flux in the vertical direction which allows the temperature to
be decomposed into the form T = T0(z) + θ (x, t), where θ (x, t) is the deviation
from the linear background profile T0 (z) = − |dT0/dz | z. The advantage of this
decomposition is that the boundary conditions for a constant vertical heat flux can
now be written as ∂θ/∂z = 0 on the upper and lower surfaces. The radial boundary
is adiabatic. These conditions are all summarised in the schematic of the flow
domain in figure 4.9.

The reference frame co-rotates with the lower boundary at rate Ω. Assuming an
incompressible Boussinesq fluid with the kinematic viscosity, thermal diffusivity,
and expansion coefficient all assumed independent of temperature, the governing
equations are given by (2.9), (2.22), and (2.23). It is useful, however, to write the
temperature field in terms of a perturbation to the background stratification and
replace equation (2.9) by (3.6). Our equations are therefore,

DΓ
Dt
= −2Ωrur + ν∇2

∗Γ , (2.22 repeated)

D
Dt

(ωϕ
r

)
=
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r
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r2∇

2
∗
(
rωϕ

)
, (2.23 repeated)

and
Dθ
Dt
= α∇2θ +

����dT0
dz

���� uz . (3.6 repeated)

We also make use of the Stokes stream function Ψ (equation 2.20)

up = ∇ ×
(
Ψ

r
êψ

)
∇2
∗Ψ = −rωψ . (2.20 repeated)
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Fig. 4.9 Schematic of the flow domain.

Making use of the characteristic velocity scale U =
√

gβ |dT0/dz | H we
introduce a Reynolds number for the flow as,

Re =
UH
ν

. (4.3)

The velocity U is constructed from the thermal and fluid parameters and describes
a typical convective velocity. As we shall see, it is typical of the actual velocities
observed in the simulations. The three other dimensionless parameters that control
the flow are the Prandtl number, Pr = ν/α, the Ekman number, Ek = ν/(ΩH2) ,
and the aspect ratio Λ = H/R.

We performed numerical simulations of the flow in the domain shown in figure
4.9 using our axisymmetric code. The simulations use a regular staggered mesh
of 1000 radial × 100 axial cells. Spatial and temporal resolution studies were
performed by increasing and decreasing both the mesh resolution and timestep
by up to two times to ensure that the results were converged. We compare our
steady results of eye formation to those of Oruba et al. (2017) below and find they
agree well. Following their approach we initially chose to keep Pr, Ek, and Λ
all fixed at 0.1 and varied Re as our main parameter of interest. Of course, the
Reynolds number is a proxy for the thermal forcing of the cyclone, setting the heat
flux through the domain.

The first results were obtained by treating the flow as an initial value problem,
integrating in time from quiescent consitions until a steady solution was obtained.
For subsequent runs we took the common approach of incrementally increasing the
forcing (Re) and using the end-state of one simulation as the initial condition for
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the next. Provided the increase in Re between cases is not too large compared to
the value of Re (i.e. of the order of 10), this allows us to avoid the computational
effort associated with calculating the long transients during the initial spin-up.

A number of different parameters were tracked over the course of the simulations
as potential ways of characterising the eye. We choose as a diagnostic for the
strength of the eye the maximum downwards velocity on the axis. This is the
parameter that provided the cleanest time series for measuring variation in the
oscillatory cases.

4.3 Results for steady flows

4.3.1 Eye formation
Let us begin by considering relatively weak flows that do not display an eye and
gradually increase the forcing. These steady-state results can be seen in figure 4.10
where the poloidal circulation has been plotted using the Stokes stream function, Ψ.
In all cases Ek = Pr = Λ = 0.1. At low Reynolds number (figure 4.10(a)) a single
large poloidal convection cell has formed. As Re is increased, the boundary layer
at the base intensifies, with strengthening azimuthal vorticity ωϕ. This vorticity is
swept up into the bulk flow as it converges towards the rotation axis to form the
conical region of negative azimuthal vorticity known as the eyewall.

These results are similar to those of Oruba et al. (2017) and we see that as Re

is increased further, the eyewall strengthens as the upwards advection of vorticity
dominates over diffusion. Eventually Prandtl-Batchelor diffusion of negative ωϕ
out of the eyewall allows for the formation of an eye. The size and strength of the
eye grows as we increase Re and the boundary layer vorticity strengthens. The size
of the eye does not vary much between Re = 266 and Re = 300 (figures 4.10d
and 4.10e) but it continues to increase in strength. Clearly there must be a critical
Reynolds number at which the steady region of reversed flow - the eye - first forms
near the top of the axis. Our results suggest that for an aspect ratio, Prandtl, and
Ekman number of 0.1 this critical value is Re ≈ 128; consistent with Oruba et al.
(2017).
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Fig. 4.10 Plots of ωϕ/r overlaid with of poloidal streamlines, Ψ, for a variety of
Reynolds numbers, showing the formation of a steady eye that grows as forcing is

increased. In all cases Ek = Pr = Λ = 0.1.
Solid streamlines represent the bulk, clockwise circulation, whilst dashed

streamlines indicate anticlockwise motion.
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Fig. 4.11 Plots of ωϕ/r overlaid with contours of angular momentum, Γ, (black),
and streamlines (yellow) for a range of Reynolds numbers with

Ek = Pr = Λ = 0.1.

4.3.2 Angular momentum
In addition to the streamlines it is instructive to also consider the contours of
angular momentum. This will later help us understand the mechanism by which
oscillations are driven. These contours are shown in figure 4.11 near the eye region
where the effects of background rotation are weak (see below). Note that, due to
the free-slip boundary condition, the contours of angular momentum must meet the
upper surface at right angles. Near the base, however, they lie almost parallel to the
lower surface due to the material advection of angular momentum by the inflow
and the no-slip boundary condition. Diffusion is strong in the lower boundary layer
and eyewall, but outside these areas diffusive effects are weaker and we expect the
angular momentum contours to more or less follow the streamlines as per equation
(2.22). This is indicated in figure 4.11(a). Close to the axis the poloidal flow is
weak, and the contours of Γ peel away from the streamlines as Γ diffuses into the
eye in much the same way as ωϕ. As a result the contours of angular momentum in
the vicinity of the eyewall straighten, becoming more vertical instead of following
the poloidal circulation. This can be seen in figures 4.11(b) and 4.11(c).

As Re is increased further and a larger eye develops (figure 4.11(d)) it can be
seen that the contours of Γmove further in towards the axis, particularly at the upper
levels where the flow in the eye sweeps them inwards. This results in the contours
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developing a kink as can be seen in figure 4.11(d). At this point we consider the
first term of equation (2.23), ∂

(
Γ2/r4) / ∂z. The kinking of the contours of Γ will

give positive axial gradients, and therefore act as a source of positive azimuthal
vorticity. This can be seen in figures 4.10(d), 4.10(e), and 4.11(d) where the top left
region near the axis has developed positive vorticity. This steady state represents an
equilibrium between competing effects; there is the diffusion of negative vorticity
into the eye from the eyewall, but the resulting flow acts to sweep the contours of Γ
inwards to a point at which they become a competing source of positive azimuthal
vorticity.

Finally, we consider the angular velocity of the flow in the inertial frame of
reference as a combination of the local and background rotation, Ω+ uϕ/r . Plotting
this in figure 4.12, normalised by Ω, we see that the absolute rotation in the inertial
frame is large (relative to ω) near the axis and in the eye, and weaker towards the
outer boundary where it falls to the level of the background rotation. The lower
plot shows the z-averaged total angular velocity as a function of radius. It is worth
taking a moment to note the distinction between angular velocity and uϕ; although
rotation near the axis is large, the velocity is low, as for a tropical cyclone, peaking
around r = 0.1 R near the eyewall.

In the next section we show how oscillations develop from this steady flow.

4.4 Oscillatory flows

4.4.1 The transition to oscillating eyes
As the forcing is increased further we observe that, once the Reynolds number
exceeds a second critical value, the eye ceases to be steady. The nature of this
oscillation is illustrated in figure 4.13. It begins with the familiar recirculating eye
near the axis inside the eyewall (figure 4.13(a)). The recirculating region (i.e. the
region of negative Ψ) then moves radially outwards towards the eyewall (4.13(b)
and (c)). This reaches an extreme around halfway through the oscillation cycle
(figure 4.13(d)), where the recirculating region has nearly been pinched off from
the axis to exist as an annulus between r = 0.05 R and r = 0.10 R. At this point the
reversed flow near the axis strengthens (figures 4.13e and f) expanding to reconnect
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Fig. 4.12 Normalised total angular velocity for the flow (top) and averaged in the z
direction (bottom red). Normalised azimuthal velocity averaged in the z direction

(bottom blue) Re = 300.

with the displaced annulus (figure 4.13(g)) and returning to the starting state of a
large eye filling the region between the eyewall and the axis (figure 4.13(h)).

It is useful to examine a time series associated with the oscillations. The
maximum downwards velocity on the axis follows the spatial oscillations of the
eye with the largest magnitude occurring when the eye is full, and the smallest
when it is displaced towards the eyewall. The strength of the oscillations can be
obtained from the time series once it reaches a steady amplitude. This is shown in
figure 4.14. The Fourier transform of the time series yields the frequency of the
oscillations (figure 4.15).

At yet higher values of Re the oscillations cause the eyewall to become
significantly distorted. As it snaps back to a fully formed state, a region of negative
vorticity is pinched off near the top of the domain and is carried radially outwards
along the upper surface. This behaviour is illustrated in figure 4.16, which shows
streamlines for the duration of one cycle. We note that the oscillations we observe
here display qualitative similarities to those seen by Harlow & Stein (1974) for
columnar vortices. Eventually, as forcing continues to increase, the system becomes
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Fig. 4.13 A series of plots showing how streamlines and ωϕ/r vary over one
complete oscillation cycle (T) for Ek = Pr = Λ = 0.1, Re = 400
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Fig. 4.15 Fourier transforms of the uz time series for different levels of forcing (Re).
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Fig. 4.16 A series of plots showing how streamlines and ωϕ/r vary over one
complete oscillation cycle (T) for Ek = Pr = Λ = 0.1, Re = 650

increasingly aperiodic with the peaks in the Fourier transforms becoming less
clear, and the noise elsewhere in the spectrum increasing. This corresponds to the
oscillations becoming increasingly complex with fluctuations in amplitude. This
can clearly be seen in the Fourier transform at high Reynolds number in figure
4.15(d).

We find that the critical Reynolds number at which oscillations in the eye begin,
for Pr , Ek, andΛ of 0.1, is Rec ≈ 398. The nature of this transition can be examined
by plotting the amplitude of the oscillations against (Re − Rec) as in figure 4.17.
The amplitude scales with (Re − Rec)1/2 up to a value of (Re − Rec) /Rec = 0.2.
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Fig. 4.17 Bifurcation diagram for the oscillating eye. Amplitude of the oscillation
has been scaled by U at Rec. The black dashed line is proportional to

(Re − Rec)1/2. The red dashed lines are proportional to (Re − Rec)0.45 and
(Re − Rec)0.55.

Beyond this point higher-order effects come in to play. This is typical behaviour of
the Landau equation, with the transition to an oscillatory state being a supercritical
Hopf bifurcation. Also shown on figure 4.17 are red bounding lines of ±10% in
the value of the exponent.

4.4.2 Influence of Ekman number
For rotating flows displaying a bifurcation, such as Taylor-Couette flow, it is
common practice to examine the dependence upon the rotation rate of the system.
To this end we performed simulations at a variety of Ek around Rec to see how
the critical value for transition changes. The results of this can be seen in figure
4.18. It was observed that the critical Reynolds number at which oscillations begin
increases with Ek until around Ek = 0.125. Beyond this it appears that only steady
eyes can exist. This is because oscillations are viscously damped. Increasing
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Fig. 4.18 Regime diagram for eyes showing Re plotted against Ek for the case
Λ = Pr = 0.1.

Ek further we found that no eye formed for Ek > 0.23, consistent with (Oruba
et al., 2018). For Ek less than 0.1, we find that the critical Reynolds number for
oscillations falls dramatically as viscous effects reduce.

4.5 The oscillation as a trapped inertial wave

4.5.1 Evidence for a trapped inertial wave
We now seek to describe a physical mechanism by which this oscillation occurs.
Perturbations to an incompressible fluid rotating about a central axis are subject to
restoring action through the Coriolis force when viewed in the rotating reference
frame. This makes such a fluid a wave-bearing system, capable of supporting
oscillations known as inertial waves. This phenomenon is described at length
in Greenspan (1968) and Davidson (2013). Closed wave-bearing systems often
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display natural frequencies and associated modeshapes. It is possible, therefore,
that the observed behaviour of the eye might be explained by the presence of a
‘trapped’ or ‘standing’ inertial wave.

To examine this claim it is necessary to probe the dynamics of the eye a little
more closely to see whether it might be capable of sustaining inertial waves. We
saw in figure 4.12 that the angular velocity at the centre of the vortex was much
higher than the background rotation. We now look more specifically at the rotation
in the eye region. Averaging uϕ and Ψ in time across one complete cycle we define
the time-averaged eye as the region in which Ψavg. < 0. We then average in the
z-direction over the eye to examine how uϕ, averaged in both time and z, varies
with r , as shown in figure 4.19. We see that the mean angular velocity in the eye is
significantly larger than the background rotation.

We can introduce a local Rossby number for the flow as,

Rol =
|up |

2 H · (
uϕ/r +Ω

) ,
where up is the poloidal velocity. This approach was first suggested by Morton
(1966) who notes that, for flows with intense swirl, the effects of rotation from
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Fig. 4.20 Rol in the eye (top) and bulk (bottom) for the case Re = 350.

the local flow could well be more significant than those due to any background
rotation. Figure 4.20 shows Rol for a Reynolds number just below the critical value
for oscillations to occur. We can see that Rol is small in the vicinity of the eye,
and larger in the bulk of the flow, as might be expected. A closer look at the eye
region shows a clear change in Rol that is bounded by the Ψavg. = 0 streamline at
the edge of the eyewall. It is well known (Davidson, 2013) that a requirement for
inertial waves to be present is small Rossby number, i.e. rapid rotation. A study
by Staplehurst et al. (2008) found inertial waves emerging in a rotating fluid for a
Rossby number below 0.4. Examining figure 4.20 we see that Rol in the eye is well
below this, and therefore may be capable of supporting inertial oscillations.

4.5.2 Frequencies of oscillation
Henderson & Aldridge (1992) and Beardsley (1970) study inertial waves in a
frustum (a truncated cone), the approximate shape of the eye. They both record
a base natural frequency of ϖ/Ω = 1.12 for a given aspect ratio, noting that
the modeshapes in the frustum appear to be a perturbed version of those for a
cylinder. They also both observe the absence of a modified first mode for a cylinder
(r, ϕ, z) = (1, 0, 1) in their results, with the lowest mode observed both numerically
and experimentally for a frustum being (1, 0, 2). It is possible to calculate an
analytical solution for inertial waves in a cylinder (see Appendix A) for which an
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aspect ratio of R/H = 1 gives a frequency ofϖ/Ω = 1.26 for the first mode (1, 0, 1),
and 1.71 for the second axial mode (1, 0, 2). Comparing the natural frequency
of a cylinder and frustum of the same aspect ratio, we find that ϖ/Ω = 1.42 for
mode (1, 0, 2) in a cylinder compared to 1.12 for the frustum discussed above. This
provides some indication of how shape changes frequency. These values are all
consistent with the general result for inertial waves that the frequency ϖ must lie in
the range 0 to 2Ω, where Ω is the rotation rate. Taking an estimate of the average
angular velocity in the eye, we obtain an estimate of ϖ/Ω = 1.54 for our Re = 400
simulation. This analysis can be repeated for other values of Re with the results
shown in figure 4.21. We see that all of the frequencies for eye oscillations lie
within the required bound for inertial waves, with values around those expected for
a cylinder or frustum.

We return at this point to discuss further the observations of high frequency
oscillations in tropical cyclones by Chen et al. (2015). They report fluctuations
in a number of parameters in the eye region with a typical period of around 2 h
(between 90 and 150 min). One of these parameters is the water vapor convection
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Fig. 4.22 Figure 11(a) from Chen et al. (2015) showing oscillations in a simulated
Typhoon Hagupit. Colour shows the time-height variation of water vapor

convection whilst the black line shows the maximum windspeed in m s−1 (scale on
right). Reproduced with permission.

which is directly related to the vertical motion. Figure 4.22 shows the variation of
this property in the eye region of a simulated Typhoon Hagupit (one of the cyclones
in which high frequency oscillations were observed) as a function of height and
time. It can be seen that the oscillations occur over the height of the cyclone with a
period of approximately 2 h. If we adopt a similar approach to the one taken for
our simulations we can estimate the local rotation rate in the core from the reported
maximum windspeed. This is around 50 m s−1 at a radius of approximately 50 km
which gives an angular velocity of 3.6 rad h−1. For oscillations with a period of
around 2 h this gives an estimation of ϖ/Ω = 0.9 which is of the order observed in
our simulations, and below the upper bound of 2 for inertial waves. It is possible,
therefore, that these oscillations are caused by trapped inertial waves, although this
hypothesis requires further investigation.

4.5.3 The oscillation in terms of angular momentum
Finally we consider the contours of Γ in the eye. These are plotted over the course
of one oscillation in figure 4.23. In the bulk flow the contours broadly follow the
streamlines, as expected from equation (2.22) when viscosity is small. At the top
of the domain they are perpendicular to the upper boundary due to the free-slip
boundary condition. In the eye, however, the contours deviate from the streamlines.
It can be seen that over the course of one oscillation the contours go from initially
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(a) t/T = 0.00 (b) t/T = 0.32

(c) t/T = 0.44 (d) t/T = 0.56

Fig. 4.23 A series of plots showing how contours of Γ evolve in the eye over one
cycle (T) for Ek = Pr = Λ = 0.1, Re = 400. Colour = ωϕ/r .

being close to vertical to lean to the left, then to the right, before returning to
their original state in a kind of ‘sloshing’ motion. Figure 4.24 shows the same
phenomenon, but at a higher level of forcing where the motion of the contours is
more noticeable. Figure 4.25 shows ωϕ/r and the contours of Γ for the first mode
of a standing inertial wave in a cylinder computed from the results in Appendix A.
Comparing the eye and the cylinder we can see that the two follow qualitatively
the same pattern. This is as we might expect given the observations of Henderson
& Aldridge (1992) and Beardsley (1970) that standing waves in a frustum are
perturbed versions of those in a cylinder.

Equation (2.23) can provide perhaps a more physical understanding of the
nature of oscillations. The ‘sloshing’ of the contours of Γ back and forth leads
to a variation of ωϕ/r as a result of the ∂Γ/∂z term. Both Rotunno (1980) and
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(a) t/T = 0.00 (b) t/T = 0.08

(c) t/T = 0.24 (d) t/T = 0.40

Fig. 4.24 A series of plots showing how contours of Γ evolve in the eye over one
cycle (T) for Ek = Pr = Λ = 0.1, Re = 600. Colour = ωϕ/r .
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Fig. 4.25 A series of plots showing how contours of Γ (top) and streamlines
(bottom) evolve over one cycle (of period T) for a standing inertial wave in a

cylinder.

Davidson (1989, 2013) provide good discussions of how this vortex stretching
generates azimuthal vorticity. The induced variation in ωϕ/r can be seen in figures
4.13, 4.23, and 4.24. The process can be summarised as follows: The flow in the
fully formed eye sweeps the contours of Γ radially inwards at the upper levels,
causing them to slant to the left. This positive axial variation in Γ generates positive
ωϕ that counteracts the flow in the eye causing it to be swept outwards towards the
eyewall. The flow again carries with it the angular momentum causing a rightward
slant to the contours of Γ. This in turn generates negative ωϕ and the eye is restored
before the process then repeats.

4.6 A discussion of boundary conditions
Although some discussion of the boundary conditions is given in section 4.2 we
include a more detailed discussion here. In addition to considering the relevance of
the boundary conditions for our numerical model, we also include a discussion of
how they compare to the boundary conditions of a real tropical cyclone.
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4.6.1 Thermal boundary conditions
First we discuss the thermal boundary conditions on the domain. We have a constant
temperature gradient dT0/dz applied between the lower and upper boundaries, with
the top being cooler than the base. Rather than impose a fixed temperature however,
we choose to prescribe a fixed heat flux at both surfaces by setting dθ/dz to zero.
The radial boundary is set to be adiabatic. Since the temperature gradient is the
same at both the upper and lower boundaries, there will be no net heat flux into the
domain; the heat flux in at the lower boundary is exactly balanced by the flux out at
the upper boundary.

Taking the dot product of equation (2.18) with u gives an equation for the
mechanical energy of the fluid

∂

∂t

(
u2

2

)
+ ∇ ·

(
u2

2
u
)
= − 1

ρ0
∇ · (pu) + νu · ∇2u + gβTuz . (4.4)

Multiplying by density gives the rate of work per unit volume and so the term
resulting from buoyancy, ρgβTuz, is the rate at which the buoyancy force does
work on the fluid. We can also manipulate the temperature equation as follows:

∂

∂t
(
ρcpT

)
= −∇ ·

(
ρcpTu − κ∇T

)
, (4.5)

where κ is the thermal conductivity. This states that, for a steady-state system, the
divergence of the total heat flux must be zero. Since the radial wall is adiabatic this
tells us that the heat flux through the domain from bottom to top must be fixed.

Based on equation (4.5) we can write the total heat flux qnet as being comprised
of an advective heat flux qu = ρcpTu and a diffusive heat flux qκ = −κ∇T . We
see that the vertical component of the advective heat flux is proportional to the
rate of working of the buoyancy force, with a factor of (gβ) /cp. Since the radial
wall is adiabatic, qnet is set by the upper and lower boundaries. By choosing the
boundary conditions to be fixed heat flux rather than, say, fixed temperature, we
provide direct control over the system and ensure that equation (4.5) is satisfied for
a steady state. These boundary conditions fix the heat flux through the domain,
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Fig. 4.26 A comparison of fixed flux and fixed temperature boundary conditions
for Re = 300. Poloidal streamlines in black.

thereby limiting the work done by the buoyancy force. This prevents the system
from accumulating or losing energy providing a ‘thermodynamic brake’ of sorts.

In addition to these mathematical observations, we also found the fixed heat
flux condition to be crucial for the formation of a single-celled poloidal circulation.
When the temperature is fixed, rather than the flux, the solution displays several
concentric convection rolls, akin to rotating Rayleigh-Bénard convection. This
is illustrated in figure 4.26 which shows two simulations of the same Reynolds
number, one with fixed temperature, the other with fixed flux. We see that for the
case of fixed flux (figure 4.26(a)) the flow is swept in along the base, gathering
thermal energy and increasing in temperature. When sufficiently warm it rises near
the axis to reach the top of the domain. The fluid then flows outwards along the
upper boundary, losing heat before sinking back down at the outer boundary. In
contrast the fixed temperature condition (figure 4.26(b)) leads to the formation of
localised hotspots at the base. These buoyant regions then rise to form convection
rolls leading to a multicellular structure.

Having addressed the model we now discuss how does these conditions compare
to reality. Starting with the lower surface and boundary layer of a cyclone, the
mechanisms by which energy is transferred at the air-sea interface are complex,
being an area of research in their own right. We restrict ourselves here to discussing
ocean-atmosphere boundary conditions presented in the tropical cyclone literature
and used in large meteorological simulations. In tropical storm conditions the heat
transfer from the sea surface does not occur primarily through simple conduction,
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as one might first assume, but is in fact heavily influenced by sea spray. The precise
nature of this process is still an active area of research (Gall et al., 2006), but it
centres around spray droplets being ejected into the boundary layer. These droplets
are at the same temperature and salinity as the ocean, but greatly enhance the
effective surface area in contact with the air. The effect of latent heat and evaporation
is also important, and meteorologists often work in terms of an equivalent potential
temperature to account for this. As a result the thermal boundary condition at the
ocean is more complex than fixed temperature, as we found in our simulations.

Perhaps the most relevant work on this topic comes from Emanuel (1986, 1995,
2003) who presents a thermodynamic model for the tropical cyclone, by means
of an analogy to the Carnot heat engine. The boundary layer flow along the sea
surface is taken as the isothermal compression stage of the cycle. It is proposed
(Andreas & Emanuel, 2001) that the heat flux from the surface be modelled as

Ûq = ρCh(hs − ha) u∗ , (4.6)

where ha and hs are the enthalpy of the air and sea at the boundary, Ch is a transfer
coefficient, and u∗ is the shear velocity of the boundary layer at the surface. A
similar formulation was also proposed by Ooyama (1969). The inclusion of the
shear velocity encapsulates the fact that sea spray increases at higher windspeeds,
enhancing heat transfer. The precise nature of this relationship and formulation of
Ch is not well understood at present however (Emanuel, 2003).

As a brief exercise we examine how the enthalpy flux proposed by Andreas &
Emanuel (2001) (equation (4.6)) manifests in our numerical model as a function of
radius, and how it compares to our assumption of constant flux. For a perfect gas
we can write enthalpy as h = cpT . Taking our steady-state numerical solution we
set ha = cp

(
T |z=0 − Tre f

)
, where Tre f is a reference temperature. We can calculate

u∗ using radial and azimuthal components of velocity. The remaining quantity,
hs, is given a fixed value reflecting the fact that the ocean is an effective thermal
reservoir with a heat capacity much larger than air. Since this is only a thought
exercise using rough figures we choose Ch to be 1. Based on this we calculate an
estimation of Ûq which is shown (normalised by our fixed heat flux) as a function of
radius in figure 4.27 for different values of hs.
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Fig. 4.27 Variation of enthalpy flux along the lower surface for Re = 300.

We see that for low ocean enthalpy the expression gives very little heat flux,
with the enthalpy of the air in fact rising above that of the ocean as it moves radially
inwards and heats up. This is consistent with observations that tropical cyclogenesis
requires a minimum ocean surface temperature. As the ocean enthalpy is increased
we see that the flux becomes positive across the entire surface remaining relatively
constant across much of the radius (from 0.1 to 0.8 r/R), and decreasing in the eye
region, consistent with real tropical cyclones (Wang et al., 2001). There is, however,
a discrepancy near the radial boundary where the flux displays a large peak. This is
due to large radial velocities at the surface beneath a recirculating region that forms
in the presence of the rigid radial boundary and covers approximately 10% of the
surface.

Although these results came from our simplified model, not a meterological
simulation or real data, and contain very rough estimations, they do provide some
reassurance about our choice of boundary condition. We find that for suitably large
ocean enthalpy, the heat flux is approximately constant across a large region of
the base. We also find that, when normalised, this estimation of Ûq is of a similar
magnitude to the fixed heat flux used in our simulations. Further support can be
found in the simulations of Wang et al. (2001) whose results suggest that flux
is relatively constant across the ocean surface, peaking near the eyewall where
windspeeds are largest and the effects of sea spray are most significant.

We now turn our attention to the upper surface of the cyclone. In our model
we apply the same boundary condition as at the base; that of constant heat flux.
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In real cyclones the majority of the heat loss at the upper levels occurs through
radiative transfer, although there are also contributions from turbulent dissipation
and precipitation. In the Carnot engine analogy of Emanuel the outflow is taken to
be analagous to the isothermal expansion stage. With a focus on radiative transfer
one might consider a black body radiation approach, but this becomes complicated
due to the fact that clouds are grey bodies, with their emissivity depending on
a number of parameters. A study by Rotunno & Emanuel (1987) made the
simplification of using Newtonian cooling at the cloud top, but remark that it this
is not a very realistic approximation. A later study by Craig (1996) investigated
cooling processes in more detail, implementing a complex radiative cooling scheme
involving a cloud microphysics parametrisation based on the Meteorological Office
global climate model. Meteorological parametrisations are still developing, with
cloud physics being an active area of study at present. Craig concluded, however,
that a number of other factors have far more significant impacts on cyclone intensity
and evolution.

As we have discussed, our model does not seek to replicate all the processes of
the tropical cyclone in detail, instead being a simplified model that is still capable
of replicating behaviours of interest. As a result we are not able to, nor do we
desire to, implement microphysics or parametrisations for various effects such as
precipitation. In the analogy of Emanuel (2003) the exact nature of heat loss is
not discussed in detail beyond the fact that it occurs at the low temperatures of the
upper troposphere. In light of this, the precise nature of heat removal at the upper
boundary may not be overly significant. Indeed, the investigations by Rotunno &
Emanuel (1987) suggest that variations in the nature of heat loss have a quantitative,
but little qualitative effect on their simulations. By setting the heat flux at the upper
surface to be constant we are able to match it to the flux at the lower surface. This
is numerically convenient, as discussed above, since it ensures a steady heat flux
through the domain.

Finally we consider the radial outer boundary. This is relatively small compared
to the other two surfaces, so we do not expect it to have a significant contribution
to heating effects. As a result it is set to be adiabatic in the model. In a real tropical
cyclone the subsiding air at large radii is far less intense than the motions towards
the centre, and the descending air typically conserves its heat (Emanuel, 2003). In
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light of this, setting the radial boundary to be adiabatic appears to be a reasonable
decision. It also fits well with the other boundary conditions in maintaining a
steady heat flux through the domain, since the fluxes at the other boundaries are
already balanced.

4.6.2 No-slip radial boundary
We now turn our attention to the no-slip radial boundary. This may not immediately
appear to be the most intuitive choice, but with further thought it is difficult to
define what the best choice would be given that nature does not provide a physical
boundary. Our numerical model is bounded, however, and as such we must supply
a condition. The rationale behind the no-slip condition comes from considering the
overall angular momentum (torque) balance on the domain. Consider the system
in the inertial frame so that the Coriolis torque is removed. The conservation of
angular momentum for the fluid can then be written as

DΓ̂
Dt
= ν∇2

∗ Γ̂ , (4.7)

where Γ̂ = Γ +Ωr2. There are no external forces or torques acting on the domain.
Following Newton’s laws this means that the fluid must exert no net torque on the
domain. The fluid exerts a force on the boundary through the action of shear stress
at no-slip surfaces. In a steady state the net frictional torque on the boundaries due
to these forces must be zero.

As we have seen, the flow comprises of regions of cyclonic and anticyclonic
rotation. Cyclonic flow is faster than the background rotation, and so will apply
a positive torque to any no-slip boundaries. The opposite is true for anticyclonic
rotation. The flow along the base is largely cyclonic as a result of angular momentum
conservation as we have discussed. As it flows out along the upper boundary it
slows, eventually becoming anticyclonic. This can be seen by plotting angular
momentum in the rotating frame for a typical cyclone as in figure 4.28. The red
region shows the cyclonic flow, and blue the anticyclonic. Providing a no-slip
condition at the radial boundary where the flow is anticyclonic allows the torque
balance to be achieved with the negative torque on the radial boundary cancelling
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Fig. 4.28 Γ in the rotating frame overlaid with streamlines for Re = 300.

the mostly positive torque on the base. This balance is discussed for real tropical
cyclones by Frank (1977) who notes a similar structure in contours of Γ as are seen
in our results.

To examine this further we performed a simulation with free-slip at the radial
boundary. The results can be seen in figure 4.29. We found that a free-slip boundary
led to longer transients before achieving a steady state than no-slip, but that the final
state for both cases are qualitatively similar. As might be expected, the removal of
the no-slip condition at the radial boundary leads to the anticyclonic region growing
in size to cover more of the base. This is necessary to balance the total torque on
the system in the inertial frame, as discussed above, with the entirety of this balance
now occurring on the base of the domain. We also see that as the anticyclonic
region at the outer boundary grows, the eye at the axis becomes compressed in the
radial direction.
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Fig. 4.29 Γ in the rotating frame overlaid with streamlines for Re = 266. (a)
no-slip (b) free-slip
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4.6.3 No-slip lower boundary
The lower boundary in our simulations is treated as no-slip and plays a vital role in
generating the boundary layer vorticity that eventually leads to the formation of an
eyewall and eye. It is well known that a marine atmospheric boundary layer can
form over the ocean surface, but we discuss briefly the nature of this boundary layer.
The ocean-air interface is a boundary between two fluids. As a result, it might be
more appropriate to adopt a semi-slip condition of the form ∂u/∂z = f (u), where
surface stresses are a function of the velocity at the surface. This reflects that fact
that these surface stresses can induce motion of the water. Indeed, this effect is
what causes the surface waves on any large body of water.

A comparison of the no-slip boundary condition to one in which surface stresses
act in the direction of wind was performed by Smith (1968) to examine their
suitability for modelling tropical cyclones. He concluded that the most realistic
results were obtained when the no-slip condition was paired with a suitable eddy
viscosity. It was noted, however, that it is not immediately clear what the ideal
eddy viscosity should be, and that it will be a function of both r and z. Smith
remarks that additional observational data would assist in making estimations of
this parameter.

Much like the thermal boundary condition, the momentum boundary condition
at the ocean-air interface is also complicated by the effects of sea spray. In
addition to a formulation for enthalpy flux, Andreas & Emanuel (2001) also
propose that the lower boundary should be subject to a momentum flux of the form
τ = −Cmρu2∗. Here Cm is a parametrised momentum transfer coefficient which
takes on different formulations over set ranges of windspeed. A discussion of some
of these parametrisations for low windspeeds can be found in Wróbel-Niedzwiecka
et al. (2019). This flux accounts for the the reduction in momentum caused by drag
on sea spray particles that are ejected into the boundary layer. It can also be used
to incorporate the effects of wave drag whereby the momentum of the boundary
layer is reduced through transfer to water wave motion. Scaling with the square of
the windspeed, the effects becomes increasingly significant as storm force winds
are approached, with the highest levels of flux in the eyewall region. It has been
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found that including these parametrisations in numerical simulations can have a
significant effect on the results (Andreas & Emanuel, 2001).

To summarise, there are clearly many different phenomena that contribute
to the precise nature of the tropical cyclone boundary layer. Many of these are
still being studied and are often represented through various parametrisations.
There is currently a lack of data for tropical cyclones that would allow these
parametrisations to be improved, mainly due to the difficulties associated with
performing these measurements. Perhaps the biggest discrepancy between our work
and real boundary layers is that our simulations are laminar whilst real cyclones
are highly turbulent (though Smith (1968) proposes an eddy viscosity formulation
may be suitable). In terms of our simplified model we are less concerned with the
precise nature of the boundary layer than we are simply in its presence as a source
of azimuthal vorticity that can lead to the development of an eyewall. As a result
the use of no-slip, or indeed any other condition that allows a boundary layer and
azimuthal vorticity to develop, is suitable for our purposes.

4.6.4 Free-slip upper boundary
Finally we discuss the upper boundary of our model which is set to be free-slip.
The rationale behind this is that there is a significant discontinuity in temperature
gradient at the tropopause as the lapse rate changes from positive to negative. This
change in stratification acts as a barrier inhibiting vertical motion. as a result rising
air flows outwards along the tropopause before cooling and sinking. Although we
represent the tropopause as an impermeable boundary this interface is, in reality,
an air-air continuum so experiences little shear stress. Therefore we choose it to be
free-slip.

The impermeability of the upper boundary becomes particularly relevant when
we consider the oscillations of the eye. If these are standing inertial waves, as we
propose, then their manifestation is reliant upon reflection from both the upper and
lower boundaries. Since the tropopause is not a physical boundary one might ask
if waves can be reflected, or if they would instead be transmitted or attenuated.
Many tropospheric models make use of a ‘rigid lid’ approximation in a similar
manner to our simulations. This has been shown to be a reasonable approximation
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in many cases, successfully replicating and explaining such phenomena as resonant
interactions (Raupp & Silva Dias, 2009) and atmospheric teleconnections (Kasahara
& da Silva Dias, 1986). On the other hand, some simulations make use of more
complex boundary conditions that allow waves to be radiated away (Purser & Kar
(2002) for example). Some large simulations, such as the Massachusetts Institute of
Technology’s general circulation model, seek to model the atmosphere as infinite
through the use of pressure co-ordinates. A good compromise might perhaps
be found somewhere between the rigid lid and a radiative boundary approaches.
Recent work by Chumakova et al. (2013) proposes a new boundary condition for
internal gravity waves at the tropopause that takes on the form of a ‘leaky lid’.
In brief, this assigns an impedance to the tropopause so that waves are partially
reflected and partially transmitted. It is found that this leads to similar behaviour to
the rigid lid, with the new modes being sightly distorted versions of those for a rigid
boundary. For now we take this as an indication that reflection of waves from the
tropopause can occur, and that our rigid lid model is an acceptable approximation.
Future research, however, might investigate extending the leaky lid condition to
other waves besides internal gravity, and to include effects such as rotation.

4.7 Summary
We have examined the system of rotating convection first proposed by Oruba et al.
(2017). The resulting flow may form an eye at the centre of a cyclonic vortex. By
increasing the forcing we observed that the system can undergo a bifurcation from
a state with a steady eye to one in which the eye oscillates. For an aspect ratio,
Ekman, and Prandtl numbers of 0.1 we find that the critical Reynolds number at
which this transition occurs is 398. Examining how the amplitude of the oscillations
varies with increased forcing we conclude that this bifurcation takes the form of a
supercritical Hopf bifurcation. We examine the dependence on Ekman number,
finding that there is an upper limit beyond which only steady eyes are observed. As
the Ekman number is decreased the critical Reynolds number for oscillations falls.

Examining the nature of the oscillations we propose that the behaviour results
from a trapped inertial wave at the centre of the vortex. The frequency of the
oscillations falls within the expected range for inertial waves, and the motions in
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the eye display clear similarities to those of a standing inertial wave in a cylinder.
The oscillations of streamfunction that we observe in our simulations appear very
similar to the results of Harlow & Stein (1974) for columnar vortices, and we
believe that the mechanism discussed above is also responsible for this behaviour.
Observations of high-frequency fluctuations in tropical cyclones report frequencies
that are within the range expected for inertial waves. Though this is promising,
further investigation is required before we can definitively say they are a result of
the inertial wave mechanism discussed above.

Calm central regions with axial downflow have been observed in columnar
vortices such as dust devils and waterspouts, and perhaps also tornadoes. It is
not immediately clear that the same mechanisms are present in columnar vortices
however. Despite their similarities as swirling flows in the atmosphere, we note that
there also significant differences between the large, disklike tropical cyclone, in
which planetary rotation is important, and the smaller columnar vortices. Indeed,
one might ask if it is possible for intermediate vortices of aspect ratio ≈ 1 to display
these behaviours, and if there is a transition between the two states. One thing we
have noted is that the nature of the upper boundary is very significant. When the
flow is forced to overturn completely, by the tropopause for a tropical cyclone, or
an upper boundary in our simulations and those of Harlow & Stein (1974), negative
azimuthal vorticity is recovered and an eyewall can form. If the flow does not
overturn, however, as is the case in the work of Rotunno (1979, 1980), then the
boundary layer vorticity is not fully recovered and an eyewall structure may or
may not form. The nature of the flow at the top of columnar vortices is not well
understood at present, therefore further investigation into an appropriate boundary
condition is essential in deciding if this is a viable mechanism. Vortex breakdown
is a popular phenomenon in the columnar vortex literature to which core structures
are often attributed. The presence of inertial waves in our simulations might lead
us to ask if this is a contradictory theory, as we first thought, or whether the two are,
in fact, linked. It is clear that there are a number of further questions and avenues
for research when we consider extending our work to columnar vortices.

Finally we have given some consideration as to how the model used in our
investigations compares to a real tropical cyclone, in particular in terms of the
boundary conditions that we have used. We found that the behaviour of the model
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is particularly sensitive to the thermal boundary conditions, with the vortex and
secondary flow failing to develop for the case of constant temperature boundaries.
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Chapter 5

Experimental investigation

This chapter reviews experiments carried out at the Geophysical Fluid Dynamics
Laboratory in the Atmospheric, Oceanic and Planetary Physics Department of the
University of Oxford . The work took place as part of a Short Research Visit funded
by the UK Fluids Network. The main aim of this work was to see if it was possible
to replicate the numerical results of the previous chapter and establish a cyclonic
vortex with a steady eye in a system of rotating convection. We begin with a review
of previous experimental work on atmospheric vortices before outlining a plan
for a new experiment. This is followed by a discussion of the experiment design
and techniques. We present a selection of particle imaging and flow visualisation
results from the investigations, along with a discussion of what was learnt. The
results include both large scale vortices and also a study of cellular convection.
The findings are then summarised, with an outlook and suggestions for future
investigations.
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5.1 A review of atmospheric vortex experiments
We begin this chapter by reviewing some previous experiments that have been
performed to model atmospheric vortices. We pay particular attention to how the
flows are generated and any internal structures that might appear.

Let us start by returning to the investigations of Maxworthy (1972), which were
discussed in the previous chapter. Here a fully enclosed chamber of water, 30 cm
in diameter and 15 cm deep, is driven by a rotating lid and side wall. A swirling
flow develops with poloidal motion driven by Ekman layers at the top and bottom
surfaces. In addition, a shrouded propeller is used to drive the flow along the axis.
This arrangement is shown in figure 5.1. Though unrealistic as an atmospheric
vortex, the experiment did result in recirculating flow on the axis that Maxworthy
termed vortex breakdown, as discussed in chapter 4. This idea was built upon by
Church et al. (1979), and the numerical work of Rotunno (1979, 1980) amongst
others.

Fig. 5.1 Experimental set-up from Maxworthy (1972)

An alternative experimental set-up that has proved popular in the tornado
community is the Ward chamber, illustrated in figure 5.2. Here an axial flow is
driven by suction at the top of the experiment. Air enters circumferentially through
an opening at lower levels where a rotating mesh imparts swirl. A baffle is used at
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Fig. 5.2 The Ward Chamber of Ward (1972)

the top of the chamber to remove rotation and decouple the fan from the working
section. The chamber itself is approximately 2 m in both diameter and height.
The Ward chamber was successful in generating a variety of internal structures
dependant upon the swirl as documented by Ward (1972). At low levels of swirl a
single vortex forms. As swirl is increased, however, the vortex transitions into a
two-celled structure with axial downflow. At the highest levels of swirl the vortex
breaks up into a number of smaller vortices. These stages are documented in Snow
(1982), and were previously illustrated in figure 4.4. The Ward chamber forms the
basis for the numerical investigations of Rotunno (1977, 1979) and Harlow & Stein
(1974) which were discussed in chapter 4, and replicate some of the behaviours
observed in the laboratory experiments. A development of the Ward chamber,
the Purdue Vortex Simulator, is discussed by Church et al. (1977). It features the
addition of ‘anti-turbulence panels’ at the inlet which stabilise the internal vortex.

The Ward chamber, its designers argue, roughly replicates the conditions at the
top of a real atmospheric vortex, though this remains a topic of debate. The issue is
highlighted in a recent review paper by Rotunno (2013) who notes that although
there have been successes with laboratory investigations of atmospheric vortices,
the main problem is tying them in with real-world meteorological observations. It
is not clear, at present, what the upper boundary condition to different atmospheric
vortices is, or what the most suitable model might be. As we saw in the comparison
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Fig. 5.3 Set-up from Mullen & Maxworthy (1977)

of the numerical investigations of Harlow & Stein (1974) and Rotunno (1977, 1979)
in the previous chapter, the nature of this upper boundary can have a significant
effect on the flow and any internal structures that might form.

All of the experiments discussed thus far have been driven by suction or fans.
In the atmosphere, however, it is less clear as to how flow is driven. Although there
is evidence that this approach might be suitable for modelling the tornadoes that
form beneath supercells, the same cannot be said for other atmospheric vortices.
As we have seen for the dust devil and waterspout, the effects of buoyancy are
crucial in establishing the flow. Since many laboratory experiments have focussed
in particular on tornadoes this effect is often neglected. This is not the case in the
experiments of Mullen & Maxworthy (1977) investigating dust devils. They use a
heated base plate to drive axial motion through convection. Tangential velocity is
imparted to the flow by a series of vanes around the circumference as illustrated in
figure 5.3. Another notable feature of this experiment, in contrast to those discussed
previously, is the lack of sidewalls allowing flow to enter (or leave) with swirl
throughout its height.
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Fig. 5.4 Set-up from Montgomery et al. (2002)

All of these experiments have been investigating columnar vortices. Indeed,
there is relatively little literature on experiments of disklike vortices. One such
case, however, is the work of Montgomery et al. (2002) investigating mesovortices
in hurricane eyes. Their experimental set-up is shown in figure 5.4. Swirl is
imparted by forcing the fluid to follow a spiral pathway around the circumference
before it enters the working section. It is then swept under a solid boundary where
the authors observe significant boundary layers build up along the surfaces. The
main experiment occurs where the flow passes through a central orifice, meant to
replicate the eye of the cyclone, and into a lower reservoir. The overall circulation
is driven by a pump at the base of the reservoir. Another difference between this
and many of the other experiments discussed is the use of water as a working fluid
allowing particle image velocimetry and dye as a means of flow visualisation.

Montgomery et al. observe that a strong vertical flow resembling an eyewall
forms at the edges of the orifice, with a swirling subsidence in the centre. However,
they do not believe that the axial subsidence is due to boundary layer effects, instead
reasoning that it is driven by a radial pressure imbalance due to the swirling flow.
The authors observe that the swirling flow within the eye appears to be ‘rotationally
stratified’ or somewhat two-dimensional following the Taylor-Proudman theorem.
Though these investigations are a step forward in terms of investigating disklike
vortices, the experiment is designed specifically to model the eye of a mature
cyclone with a swirling flow externally enforced. As a result it does not shed any
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Fig. 5.5 Set-up from Sukhanovskii et al. (2016b) showing the shallow tank heated
at the centre of the base and mounted on a rotating platform.

light on how a large cyclonic vortex might form in rotating convection or how eyes
might naturally arise at the centre.

In fact, all of the experiments we have discussed impart swirl to a flow by
artificial means such as rotating panels or steering vanes. When investigating
columnar vortices, for which the Rossby number is typically large, this may well
be a justifiable approach. The issue, however, is that it is difficult to control the
conditions at the inflow and establish how internal structures might arise. Indeed,
this was one of the main criticisms of the numerical work of Harlow & Stein
(1974) who did not provide control over the distribution of azimuthal vorticity at
the inlet – a key property in the formation of the eyewall and eye. We finish by
considering the most recent work in this area from Sukhanovskii et al. (2016a,b),
another investigation into disklike vortices driven by thermal heating at the base.
The experiments are performed on a rotating platform allowing swirl to develop
more naturally than the experiments above. The apparatus is illustrated in figure
5.5.

A key feature of these experiments is the fact that they establish a single cyclonic
vortex with an overturning poloidal flow. Furthermore, there is anticyclonic flow at
upper levels as observed in real storms and our numerical investigations. There are,
however, no observations of eyes. This is likely due to the way in which thermal
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Fig. 5.6 Poloidal flow at the centre of the vortex taken from Sukhanovskii et al.
(2016b).

forcing is applied. In order to create an overturning poloidal circulation, heat is
applied only at the centre of the domain generating an axial plume. This allows a
cyclonic vortex to be spun up as fluid is drawn in at lower levels to maintain the
plume, and ejected at the top, as illustrated in figure 5.6. As a result of strong,
localised, thermal forcing forming a plume along the axis, the formation of eyes
and any subsiding flow is inhibited. Given that it is possible to produce a single
cyclonic vortex in rotating convection with heating at the centre, we might ask
whether it is possible to generate a vortex that is capable of maintaining an eye
using different thermal boundary conditions.

In summary, we have taken a look at previous experiments of both columnar
and disklike atmospheric vortices. There are a number of points to note that might
inform our own investigations as follows:

• Far more experiments have been performed for columnar vortices than for
disklike vortices.

• The nature of the upper boundary and any outlets (axial vs. radial) can have
a significant effect on the flow. There is currently no consensus as to what
the most appropriate condition for columnar vortices should be.

• Experiments are often artificially driven. This is usually by a pump, although
other cases use a heated centre. The extent to which this affects the flow and
any internal structures is not clear.

• Rotation is often artificially enforced. This makes it difficult to control the
conditions of the inflow in terms of vorticity, which may affect internal
structures.
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• Internal structures have been observed in columnar vortices and classified by
some authors as vortex breakdown. These bear similarities to the subsiding
flow of the eyes we have discussed. As such, we might ask if they arise due
to a similar process.

Therefore the primary questions that we shall ask are:

• Is it possible to form a large disklike cyclonic vortex in rotating convection
without prescribed forcing (pump or localised heating)?

• If so, can this vortex form an eye at the centre supporting the theory for eye
formation discussed in the preceding chapter?

• Finally, if an eye does form, how does it compare to previous experimental
observations of internal structures in columnar vortices, and might there be a
link between the two?

5.2 Experiment design
At the start of this project we envisaged modelling just the central region of the
cyclone in order to study the dynamics of the eye specifically. Early investigations
involved flow in a cylinder driven by a pump. The flow was cycled around the
outside of the cylinder in a pipe in order to impart swirl in a similar manner to
the experiments of Montgomery et al. (2002). However, these experiments were
unsuccessful in recreating the desired behaviour. We found that the jet that formed
upon exit from the spiralling pipe would often persist until it impinged upon the
wall of the cylinder, at which point the Coandă effect caused it to stick to the edge
rather than spiralling radially inwards. Eventually these efforts were abandoned
and we concluded that it would be necessary to model the full cyclone in order to
achieve the desired flow structure at the centre. This led us to perform experiments
using rotating turntables at the GFD laboratory in Oxford. What follows are the
details of these experiments.

Even with a turntable to provide background rotation, there are still a number
of challenges in designing a laboratory experiment to emulate the simulations of
the previous chapter. The main issues to consider are:
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• The upper surface free-slip boundary condition.

• The upper surface temperature boundary condition.

• The lower surface fixed heat flux boundary condition.

• Matching of dimensionless parameters.

To tackle the first of these we decided to perform experiments in a tank with a
free surface. Since the top surface of a laboratory experiment should be smooth
without waves, the upper boundary should be a reasonable approximation to free-
slip. One concern from using this approach in a rotating experiment is that the
free surface would become distorted into a concave parabola as a result of the
centrifugal force. However, a calculation of this distortion for the rotation rates and
tank size used (0.025 rad s−1 and 400 mm) shows that this is negligible in our case.
This approach also provides some assistance with the second point concerning
the thermal boundary condition. We assume that the laboratory temperature, and
hence the air above the free surface, is held at a fixed temperature. This assumption
is aided by the fact that the laboratory is climate controlled, and the ambient
temperature confirmed to be reasonably steady by thermocouple measurements.
Though this allows us to maintain a temperature gradient across the domain, it does
not match the fixed-flux boundary condition of our simulations. The heat transfer
at the upper surface will change as the water changes in temperature. However, the
results of Rotunno & Emanuel (1987) suggest that the structure of the cyclone is not
qualitatively sensitive to the precise nature of heat removal at the upper boundary.

The same cannot be said of the lower thermal boundary condition, however. We
saw in section 4.6 that changing the lower boundary from constant flux to constant
temperature drastically alters the flow. It is relatively easy to impose a constant
temperature boundary condition in the laboratory by passing preheated refrigerant
under the lower surface. If constructed from copper, or a similar material, the high
conductivity rapidly equilibrates the surface to a constant temperature. A constant
heat flux condition is somewhat more challenging. One option might be to make
use of electric heating, supplying heat by passing current through a resistive heating
element. An advantage of this approach would be that the heat flux of a resistive
element is directly proportional to the current passing through it. However, if only a
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single heating element is used with a high conductivity surface then the temperature
across the base will still tend to approach a constant temperature. Therefore it
would be necessary to divide the surface into several segments, each utilising an
individual, localised heating element to approach a constant flux condition over
the surface. This type of arrangement would be challenging to set up and control,
and though it has been tried in some cases there are no reports of successful
implementation. The apparatus available to us was set up to provide a constant
temperature boundary condition as described above, passing heated refrigerant
below a copper surface. One of the challenges in the design process was therefore
how to modify the boundary to provide something closer to constant flux. The
approach we took was to install a thin layer of material with a lower conductivity
above the copper base. By constructing a resistor network model for the heat
flux through this system we found that this layer allows heat to pass through, but
inhibits it from spreading laterally to equilibrate to a constant temperature, thereby
providing a closer approximation to constant flux. We prepared a number of circular
acrylic base plates of different thickness that could be inserted into the tank. It is
clearly challenging to replicate the constant flux boundary condition in a laboratory
setting. The results of our investigations, and their relative success, is something
that can be evaluated in order to guide future work.

The final important point to discuss is the matching of the dimensionless
parameters between simulation and experiment. The simulations of the previous
chapter were mostly performed for an Ekman number, Prandtl number, and aspect
ratio of 0.1, with Reynolds number varying between 100 and 1000. The first
dimensionless number we consider is the Prandtl number. This is a material
property set by the viscosity and thermal diffusivity of the fluid we are using. To
obtain a Prandtl number of 0.1 would require rather exotic substances, such as
liquid metals. Air has a Prandtl number of 0.7. We have opted to use water, which
has a Prandtl number of around 7.0 at room temperature. This is because water
is convenient, is easier to perform flow measurement and visualisation in, and
using liquid rather than gas assists with the upper free-slip boundary condition as
discussed. The results of Oruba et al. (2018) suggest variation of Pr increases the
critical value of Re, but does not prevent eye formation.
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Next we consider the aspect ratio. Based upon the investigations of Oruba et al.
(2018) eyes can form for vortices with aspect ratios between 0.05 and 0.25. The
radial dimension is fixed by the geometry of the tank, but the depth can be altered
to achieve any aspect ratio. Though we can match this dimensionless parameter,
consideration must be given to the practical implications. For a tank of 400 mm
diameter we would require a depth of between 10 and 50 mm. In this case the
shallow depths become comparable to the thickness of the the LED light sheet (a
few mm), which would inhibit visualisation and measurement. It also makes it
difficult to control the Reynolds number through maintaining a temperature gradient
across the depth as we shall discuss shortly.

For a given fluid (viscosity) and geometry (depth) the only remaining free
variable in the Ekman number is the rate of rotation. Based on the investigations
of the previous chapter (section 4.4), and also the results of Oruba et al. (2018),
eyes can form for vortices at Ekman numbers between 0.05 and 0.22. Therefore
we choose a rate of rotation to provide an Ekman number within this range. The
smaller the tank we use, the slower the rate of rotation that is required. Again, it
is important to consider the practical implications in terms of spin-up time and
limitations of equipment. For a 400 mm diameter tank of water with an aspect
ratio of 0.1, an Ekman number of 0.1 requires a rotation rate of 0.025 rad s−1, i.e. a
period of 250 s which is very slow.

Finally we consider the Reynolds number. The only remaining free variable
is the temperature gradient. Practically, this is defined by the temperatures of the
top and bottom boundaries. For a 400 mm diameter tank of water filled to give an
aspect ratio of 0.1, a Reynolds number of 400 requires a temperature difference of
only 0.6 ◦C between the upper and lower surfaces. The results of Oruba et al. (2018)
suggest that increasing aspect ratio and Prandtl number will require higher Reynolds
numbers to form an eye, but this illustrates how the differences in temperature
required are practically very small.

With all of this considered we can see that the experiment will be very
sensitive to control parameters which could present a challenge to performing
precise quantitative measurements. Nonetheless, it is possible to access the correct
parameter regime (with the exception of Prandtl number) from the simulations so
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we decided to proceed. In the following section we discuss the precise details of
the experimental set-up used to perform the investigations.

5.2.1 Experimental set-up
The experimental set-up in the GFD laboratory at Oxford is shown in figure 5.7
with a CAD model (5.7a) alongside a photo of the apparatus (5.7b). It consists of an
upright cylindrical vessel mounted on a turntable allowing rotation about the axis
of symmetry. The vessel was constructed of perspex, with a diameter of 400 mm,
height of 200 mm and wall thickness of 25 mm. The turntable sits on a levelled
base and supports a variety of experimental apparatus in addition to the tank as
discussed below. It is driven directly by a servo-controlled permanent magnet DC
motor, the control panel for which is shown in figure 5.8. The motor is capable of
providing rotation rates of 0.01 rad s−1 and above, with higher speeds being more
stable. An aluminium extrusion structure above the experimental area supports
an overhead camera and carries connections to overhead wiring that interfaces
between the laboratory and rotating frame. This structure also allows a shroud to
be attached around the experiment up to the height of the camera. This was done to
eliminate external lighting, reduce reflections on the surface of the experiment, and
limit disruption due to air currents in the laboratory.

The entire base of the tank is made from copper painted matt black and is
temperature controlled from below by passing a refrigerant (R507) through a series
of pipes around the circumference and the centre. The temperature of the refrigerant
was regulated using a Huber Unichiller device (figure 5.9) capable of delivering
up to 29 l min−1 at temperatures in the range −20 to 100 ◦C. It could be set to the
nearest 0.1 ◦C with a stability of ±0.2 ◦C. The temperature of the laboratory was
controlled to within ±1.5 ◦C by an air conditioning unit set at 20 ◦C.

The turntable had a Firewire camera mounted above the tank, fixed in the
rotating frame. This was an Imaging Source DFK 31BF03.H model, chosen for
its high picture quality and lossless compression, and capable of taking up to 30
images per second with a resolution of 1024 × 768 pixels. The camera accepts
a number of different lenses to provide the best image size and focussing for the
experiment. The investigations presented here used a 12 mm diameter lens. In
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(a) CAD model provided by AOPP (b) Photograph of the rig

Fig. 5.7 The rotating rig at AOPP
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Fig. 5.8 Control panel for the DC Servo
motor

Fig. 5.9 Unichiller device for controlling
base temperature
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(a) Overhead camera (b) Side mounted camera

Fig. 5.10 Cameras mounted on the rotating platform to take images of the
experiments

addition to this a Logitech C920 HD camera capable of recording at 30 frames per
second with a resolution of 1920 × 1080 was mounted at the side of the tank to
record images in the vertical plane. These cameras are shown in figure 5.10.

The temperature of the experiment was monitored at various locations using
type T thermocouples, chosen for their accuracy and stability. They are accurate
to ±1.0 ◦C, and were connected to a Picolab TC-08 data logger (visible in figure
5.10b) which has an accuracy of ±0.5 ◦C. Thermocouple locations included the
base of the tank, the surface of the fluid, above the surface, and in the ambient air of
the laboratory. There were also several internal thermocouples built into the base
plate of the experiment to monitor the temperature across the lower surface. The
data logger was connected via USB, along with the cameras, to a computer housed
on the rotating platform. This was then accessed remotely from the laboratory
frame over a wireless connection.

In order to visualise the experiment the tank was lit using various methods. To
illuminate the entire flow a strip of white LEDs was placed at the edge of the tank. It
was also possible to restrict visualisation to a horizontal plane by using an annulus
that surrounded the experiment. The annulus contains white light LEDs behind
a transparent slit to form a collimated light sheet. It could be raised and lowered
on threaded rods to different heights in order to illuminate different planes of the
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Fig. 5.11 The perspex tank surrounded by the lighting annulus

experiment. Due to a ring of thermal insulation surrounding the edge of the base it
was not possible to lower the light sheet all the way down to illuminate the flow at
the lower boundary. Instead we were restricted to performing PIV measurements
in the mid- to upper levels of the flow.

The working fluid for the experiments was water with a kinematic viscosity
of 1.00 × 10−6 m2 s−1 and a thermal diffusivity of 0.14 × 10−6 m2 s−1. Flow visu-
alisation was provided by injecting a concentrated solution of fluorescein. This
was done using a hypodermic needle suspended in the flow, controlled remotely
using a syringe driver mounted on the rotating platform. In other cases pliolite
particles were suspended in the fluid to allow particle imaging measurements to be
made. These were usually 355-500 µm in size, although smaller particles (down
to 50 µm) were used in some cases. In some of the particle-laden experiments
glycerol was added to the water to increase its density and to make the particles
neutrally buoyant. The density and viscosity of the water-glycerol mixture were
calculated from the volume fractions using the model of Volk & Kähler (2018).
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5.2.2 Data acquisition and processing
As discussed previously, images of the flow were captured using a camera mounted
above the tank in the rotating frame. The frame rate and gain were controlled
remotely using the ICCapture camera software. It is advisable to keep the gain
low so as to minimise noise in the images. This results in a trade-off since lower
values of gain require longer exposure times (lower frame rates). The frame rate
was set to be appropriate for the experiment so that particle movement between
successive images was not too large, after which a low but acceptable value of gain
was chosen.

Post processing was performed using the UVmat software package from LEGI
(2018). This is a free MATLAB toolbox covered under the GNU public licence
that can be used to visualise and analyse a wide variety of data. It is specifically
designed for laboratory use, however, and contains particle imaging velocimetry
(PIV) software. More specifically, the software employs correlation imaging
velocimetry (CIV). This is a particular type of PIV algorithm (cross-correlation
based pattern matching) that tracks translation, rotation, and shear in a flow. It does
this by comparing two successive images with a given time separation. The first
image is divided up in to a grid of boxes of m × n pixels, each of which is called
a correlation box (a typical box size would be 10 × 10 pixels). Another domain,
known as the search box, is defined as a larger area around a correlation box with
size i× j pixels. The algorithm then calculates the correlation between a correlation
box from the original image and the locations it could take within the search box in
the new image. The peak in the correlation function is taken as the new location,
with the distance from the original image providing a displacement field.

The algorithm requires some fine-tuning to select appropriate sizes for the
correlation and the search boxes for each application, and also the time between
images. Correlation box size depends upon the particle seeding density so as to get
an identifiable image, whilst the search box and time interval depend upon flow
velocity. The correlation box needs to experience enough motion to generate a
displacement field, but not so much that it moves beyond the search box boundaries
or becomes distorted to the extent that it no longer bears resemblance to the
original box. The time interval and search box are typically chosen such that
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CB

SB

Image 1 Image 2 Displacement

Fig. 5.12 Illustration of the CIV process.

the displacement between images is around 5-20 pixels. Unlike more traditional
particle imaging techniques approaches, CIV does not need to resolve the motion
of individual tracer particles making it well suited for analysing flows with a variety
of spatial scales. The algorithm is also capable of sub-pixel accuracy through
interpolation of the correlation function.

The CIV process is illustrated in figure 5.12. Two images are shown, divided
into correlation boxes (CB). CIV is then performed using the central box of image
1. This correlation box is compared to locations throughout the search box (SB)
in image 2 to generate a correlation function. The location corresponding to the
maximum correlation is shown in red. Based on the position in image 2 relative
to the original position of the correlation box in image 1, a displacement can be
calculated, shown by the green arrow. Given a time interval between the images,
this displacement can be converted into a velocity. By repeating this process across
the images, the CIV algorithm generates a velocity vector field for the flow between
the two images.
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A more in-depth discussion of PIV can be found in Raffel et al. (2007), whilst
the CIV algorithm is discussed specifically in Fincham & Spedding (1997) and
Fincham & Delerce (2000).

Temperature was recorded over time using the Picolog software. This interfaces
with the data logger to provide a temperature time series for each thermocouple.
It is possible to record up to 16 different channels at once and generate both a
graphical and csv file output.

5.2.3 Methodology
Experiments were performed by filling the the tank to the required depth with
water and setting the light sheet to the desired height. If PIV investigations were
to be performed then pliolite particles were added to the fluid. It is important to
select an appropriate particle size for the PIV software to work well. This can be
guided by considering the pixel size of the camera used to capture images, but
ultimately requires some fine-tuning depending upon the nature of the experiment.
We found that 355-500 µm particles worked best for our application. It is also
important to consider the particle density and mixing. To control this, a solution of
particles was prepared by mixing in a small quantity of water with a wetting agent
using a magnetic stirrer. This was then added to the experiment gradually until the
desired seeding density was achieved. When particles were used it was necessary to
ensure that they were neutrally buoyant since the experiments took place over long
timescales. This was done by adding glycerol to the fluid and measuring its density
until it matched that of the particles. If there were any bubbles from the wetting
agent or poorly wetted particles on the surface of the water, these were removed
with a suction pump before performing any experiments. For investigations using
fluorescein a hypodermic needle was positioned at the desired location in the tank
using a support frame constructed from LEGO.

After the necessary preparation the tank was set rotating and left until the
fluid approached a state of solid-body rotation. Following this the cameras and
thermocouples began recording data. The heating, which was pre-set to a specific
temperature, was then switched on. An example time series of temperatures
during an experiment is shown in figure 5.13. We see that the temperature of
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Fig. 5.13 Temperature variation over the course of one of the experiments.

both the surface and the air above remains relatively constant over the course of
the investigation. The temperature of the copper base rapidly heats up after it
is switched on before being held steady at the set temperature. The temperature
recorded on the base of the tank lags behind this as a result of the acrylic base plate,
rising slowly over the course of the experiment. This suggests that the Reynolds
number is gradually increasing, but we cannot say how the heat flux varies without
further measurement. It was possible to adjust the temperature during the course of
the experiment, and sometimes we adopted an approach similar to the simulations
where the system would be recorded at one temperature, then stepped to another.
The experiments could not run for an indefinite period of time, however, as the
water gradually increased in temperature. Whenever this became noticeable from
the thermocouple measurements the experiment was left to cool or the working
fluid replenished.

5.3 Results
In this section we discuss the results from the investigations. We begin with the
PIV results which provide insight in to the overall structure of the flow, discussing
the different patterns that were observed in the investigations. We finish this section
with some observations of cellular convection from investigations outside our main
parameter range of interest.
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5.3.1 PIV results
PIV measurements were made to determine the structure and patterns of the flow.
The measurements are made at the upper levels illuminated by the horizontal light
sheet. Since the flow evolves slowly it was difficult to observe structures using the
naked eye. We use the PIV measurements to assist us in seeing the flow patterns.
The first objective, as discussed above, is to examine whether it is possible to form
a single large cyclonic vortex. A number of investigations were performed to gather
data and explore the parameter space. Here we present a selection of the results
that illustrate our main observations.

In a number of cases we observe a cyclonically swirling flow that fills the entire
tank. This can be seen in figure 5.14a which shows the velocity field near the
upper surface. These investigations were performed at an Ekman number of 0.133
and aspect ratio of 0.165. The Reynolds number was of the order of 1200. This
cyclonic flow appears to be a relatively robust feature of our experiments, observed
in numerous runs around this parameter range. We also note that anticyclonic
structures were rarely observed, likely as a result of the imposed background
rotation.

The formation of a singular cyclonic vortex is promising, and indicates that the
experiment can support a somewhat axisymmetric flow without too many adverse
three-dimensional effects. However, there are a number of discrepancies between
the flows observed in the laboratory and those presented in the preceding chapter.
The first of these is the fact that the vortex was not necessarily centred on the axis
in all cases. Indeed, in figure 5.14a it can be seen that the centre of rotation is
displaced to one side, an observation that we shall discuss shortly. The location of
this off-centre axis of rotation was observed to drift slowly over the course of the
experiment. It should be noted that such asymmetries are not entirely unexpected,
as we have moved from enforced axial symmetry to three-dimensional flow.

We also note a lack of an anticyclonic flow towards the outer boundary as
observed in the numerical simulations and required for a torque balance on the
system. This may well be linked to another discrepancy we observed; the flows did
not appear to spiral, but rather seemed to follow roughly circular streamlines about
the centre of rotation. In our simulations the development of an anticyclonic region
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arose due to the conservation of angular momentum as the flow spiralled radially
outwards. If the flow follows closed streamlines in a single horizontal plane, this
effect will be not be present.

In addition to the cyclonic vortex we also frequently observed the development
of a double vortex. This flow pattern can be seen in figure 5.14b. It consists a pair
of large scale vortices, one cyclonic and one anticyclonic, roughly dividing the
tank in two. This division can be seen more clearly in figure 5.15 which shows
the curl of the vector field. It can clearly be seen that one half (yellow) contains
positive vorticity, i.e. cyclonic rotation, whilst the other (blue) is largely negative,
i.e. anticyclonic.

Another interesting observation is that flows seem to be able to transition
between these two structures. In figure 5.14 the single cyclonic vortex was observed
to split in two over the course of the experiment. This clearly breaks the assumptions
of axial symmetry we have previously made in our analysis. It is likely that the
splitting and merging is related to the centre of rotation being off-axis in the
single vortex case as noted above. A possible explanation for the double vortex
structure is that it is a wave number 1 instability of the flow. This can be seen
best from the vorticity plot of figure 5.15, which clearly shows its dipolar nature.
The decomposition of a tropical cyclone into azimuthal modes is discussed by
Reasor et al. (2000). They note that, although axisymmetric to zeroth order, the
structure of a cyclone contains significant amounts of wave number 1 and 2 modes,
particularly whilst undergoing changes in intensity and structure. They believe
that these modes may occur as a result of vortex stretching transferring vorticity
from the horizontal to the vertical direction. They suggest that the wave number 1
mode, as we perhaps see in our laboratory experiments, could be due to enhanced
convection on one side of the cyclone. We have already discussed how our lower
boundary does not precisely replicate the constant flux condition of our simulations
and might lead to the formation of localised hotspots. As such it could be that the
dipolar structure that we observe occurs due to enhanced convection in a particular
region, though we cannot know for certain without more detailed measurements.

By considering the axisymmetric and dipolar structures as two separate modes
we might also be able to explain the off-axis vortex of figures 5.14a and 5.16a as
being a superposition of the two modes. The combination of a strong axisymmetric
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(a) Velocity for Re = 1225
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(b) Velocity for Re = 1525 at a later time.

Fig. 5.14 Velocity vector fields from an experiment with Ek = 0.133, Λ = 0.165
overlaid on an image of the tank.
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Fig. 5.15 Velocity field of figure 5.14b showing a double vortex, overlaid on the
vertical vorticity field.

structure and a weaker dipole would result in an off-axis vortex. Further inves-
tigations are required to explore this idea in more depth, however. In particular,
performing a modal decomposition and looking at the transitions between the single
and dipolar states as a function of different modes might be illuminating.

In one case we observed that as the temperature increased a dipolar state
transitioned into a flow that was anticyclonic at the upper levels, spiralling outwards
from the centre of rotation. This is shown in figure 5.16a and is the experiment
that most closely resembles the cyclone structure discussed in the previous chapter.
This is encouraging, although we note that there is no evidence of an eye at the
centre of this structure. One explanation for this might be that the Reynolds number
is too low for the process of eye formation and a higher temperature gradient is
required in order to form an eye. This might be due to the fact that we are using
a Prandtl number that is significantly different to the simulations, but could also
be caused by uncertainties in our Reynolds number. As we saw in figure 5.13, the
temperature gradient across the acrylic base when calculated from thermocouple
measurements is lower than that based upon the temperature of the copper base.
As a result the Reynolds numbers reported here could be overestimates, and may
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need to be larger than those in the simulations to form a vortex as a result of the
increased Prandtl number.

Following the development of an anticyclonic vortex we increased the tempera-
ture gradient further to see if it might develop an eye. This, however, led to the
flow becoming highly three-dimensional, as shown in figure 5.16b. This is not
unexpected since significant heating at the base will eventually lead to buoyancy
dominating over rotational effects. Localised warm regions form at the base giving
rise to thermal plumes which carry fluid upwards to the surface where it cools
before sinking back down. The development of these structures indicates that
efforts to mimic a constant flux boundary condition have become ineffective. The
behaviour we see is that expected for a constant temperature boundary condition as
discussed in the previous chapter.

Before finishing our discussion of the PIV results, it is worth mentioning the
behaviour observed in figure 5.17. We can see from the velocity field see that
the flow is dominated by a large scale radial influx at the outer boundary. This
was found to be caused by a rapidly rising annulus of buoyant fluid at the outer
boundary. This is due to the fact that, though the base plates were designed to be
close fitting, they were approximately 2 mm less in radius than the tank in order to
be inserted and removed. As a result the thin region around the edge of the base
could heat the fluid far more effectively than elsewhere in the tank. This causes
enhanced convection at the edges, with fluid rising up and then moving radially
inwards. Though this was not an issue at short timescales with low heating, the
effect dominated when experiments ran for longer and larger temperature gradients
were used.

5.3.2 Rotating cellular convection
This section details some observations that were made outside of our main parameter
range but are interesting and worthy of discussion. It is relatively well known that
fluids heated from beneath can organise in to a cellular structure following the
onset of convection. The first observations of this phenomenon were documented
by Bénard (1900), who lends his name to generic convection in a fluid heated
from below. Once a critical value of Rayleigh number is exceeded convection
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(a) Velocity for Re = 1600 displaying an anticyclonically spiralling flow.

X (pixel)
100 200 300 400 500 600 700 800 900 1000

Y
 (

pi
xe

l)

100

200

300

400

500

600

700

(b) Velocity for Re = 1900 showing significant three-dimensional effects.

Fig. 5.16 Velocity fields from an experiment with Ek = 0.133, Λ = 0.165.
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Fig. 5.17 Velocity field showing enhanced flow at the outer boundary

begins, with a cellular structure maintained until around 10 times the critical value
(Chandrasekhar, 1981). Beyond this the motion becomes unsteady and irregular,
transitioning to turbulence. A number of different arrangements are possible for
this cellular lattice, but when one of the boundaries is a free surface it tends to
take the form of a honeycomb comprised of regular hexagons. Convection is
enhanced at the free surface by the effects of surface tension and sometimes referred
to as Bénard-Marangoni convection (Maroto et al., 2007). Figure 5.18a shows
the remarkable regularity of the lattice1 in a thin layer of silicone oil containing
aluminium flakes. The close up image in figure 5.18b shows how fluid rises at the
centre of the hexagon before moving outwards to the edges where it descends.

An interesting question is what happens when the system we have just described
undergoes rotation. A theoretical discussion of the effects is given by Chandrasekhar
(1953), with a physical interpretation provided by Veronis (1959). The combination
of these studies is summarised in Chandrasekhar (1981). It is found that once a
critical Rayleigh number (which is now a function of rotation) is exceeded, the fluid
still forms a regular lattice of convection cells. A hexagonal honeycomb is, again,

1Note, the defect in the lattice is located above a small dent in the lower boundary.
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(a) Lattice structure of convection. (b) Close up image of a hexagonal convection cell.

Fig. 5.18 Hexagonal cell structure from experiments on surface-tension-driven
Bénard convection. Images taken from Koschmieder (1974) and a photograph by

Velarde, Yuste and Salan via Van Dyke (1982).

the preferred pattern when there is one free surface. There is a notable difference
between the rotating and non-rotating cases, however, due to the influence of the
Coriolis force. As fluid rises at the centres of cells and moves radially outwards
towards the edges it experiences this transverse force causing it to take a helical
path, spiralling anticyclonically. The opposite is true as it converges on the corners
of the hexagon and begins to descend. Figure 5.19 from Veronis (1959) shows
how the hexagonal cells are distorted under the action of rotation. The critical
Rayleigh number required for the onset of convection also increases. This is due to
the ‘stiffening’ effect of rotation on a fluid that acts to inhibit vertical motion, as
described by the Taylor-Proudman theorem. Despite the extensive mathematical
analysis, experimental observations of these helical cells are relatively rare. Some
observations were made by Rossby (1969) which showed the cellular divisions
from above, but not the internal structure.

In relation to the overarching theme of these investigations we note that it was,
at one time, hypothesised that these structures might be responsible for polygonal
eyes observed in some tropical cyclones such as those illustrated in figure 5.20.
This theory has been superseded, however, and it is now believed that these shapes
are the result of internal gravity waves within the eye (Lewis & Hawkins, 1982).
These structures still hold relevance to geophysical fluid dynamics, however, and
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Fig. 5.19 Sketch of the vortices in the convection cells that form a hexagonal
structure taken from Veronis (1959).

are believed to be involved in the formation of convective Taylor columns in the
Earth’s outer core (King & Aurnou, 2012; Aurnou et al., 2015).

We performed a short series of experiments at an increased rate of rotation
during which we observed the formation of the cellular structures described above.
The non-dimensional parameters for these investigations are summarised in table
5.1, along with an estimation of the forcing and a description of the observed
structure. The level of forcing is based on estimates of the critical Rayleigh number
Rac from Veronis (1959). The experiments were performed in a similar manner
to those discussed previously. First the tank was set rotating until the fluid was
in a state of solid body rotation. Following this the heating was switched on and
allowed to stabilise. We then inject a quantity of fluorescein near the base to show
the motion of the fluid. Images were captured simultaneously from above and the
side.

Figure 5.21 shows the development of the flow structures taken during experi-
ment 3. The fluorescein is injected at time 0 in figure 5.21a. This is followed by
some turbulent motion resulting from the impingement of the jet on the base in
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Fig. 5.20 Polygonal structures observed at different times during the life cycle of
Hurricane Betsy (1965). Images taken approximately 1 h apart. Image taken from

Lewis & Hawkins (1982).

Experiment Ra × 10−5 Ek × 103 Ro Ra/Rac cell structure

1 1.3 5.7 3.6 5.0 irregular
2 6.3 2.5 2.2 5.3 irregular
3 25.2 1.3 0.6 0.6 regular
4 36.8 1.0 0.9 2.6 regular
5 11.4 1.9 1.7 6.1 irregular

Table 5.1 Details of experiments on cellular rotating convection.
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(figure 5.21b) before the fluorescein eventually settles near the base of the tank
(figure 5.21c). The convective motions can begin to be seen in figure 5.21d as
fluorescein is swept up at the centre of the cells forming a series of spikes. These
continue to develop into columns over the course of figures 5.21e and 5.21f, growing
towards the surface. The columns can be seen in the overhead images as bright
spots. Looking at the rightmost column in figure 5.21f (side view) we see that the
fluid is beginning to spiral anticyclonically outwards as it moves towards the edges
of the cell.

This spiralling becomes much clearer in figure 5.21g as the fluorescein reaches
the top of the fluid and begins to spread at the surface. As a result the lattice of
hexagonal cells begins to become visible. After an extended period the fluorescein
has had time to cycle round the cells, making the edges of the lattice much clearer
(figures 5.21j and 5.21k). Descending fluorescein at the edges of the cells makes it
hard to see any in the side images, though it is possible to see new towers forming
on the periphery as they take on fluid that has descended in neighbouring cells.
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(a) 0 s

(b) 15 s

(c) 65 s

Fig. 5.21 Fluorescein visualisations of the formation of convection cells taken from
the side (left) and top (right) for a range of times after injection.
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(d) 90 s

(e) 110 s

(f) 125 s

Fig. 5.21 continued.
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(g) 145 s

(h) 215 s

(i) 285 s

Fig. 5.21 continued.
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(j) 385 s

(k) 505 s

Fig. 5.21 continued.
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(a) Sketch taken from Veronis (1959). (b) Fluorescein image from experiments.

Fig. 5.22 Top view of the hexagonal cells.

Our experiments are compared to the theoretical sketches of Veronis (1959)
in figures 5.22 and 5.23. The first of these shows the hexagonal lattice structure
viewed from above. It is possible to see how the cells tessellate together in a regular
fashion, with the edges clearly defined by brighter regions of fluorescein. We can
also see how the fluid spirals anticyclonically outwards from the centre of the cells
under the action of the Coriolis force, much in the same way the outflow of a
tropical cyclone does. Figure 5.23 shows the side view of convection cells, again
alongside a sketch by Veronis. From this angle we can see the three-dimensional
structure of the cells and how the column forms an anticyclonic helix that spirals
upwards and outwards at the top.

We estimate the critical Rayleigh number for the onset of convection, and hence
how many times supercritical each of the experiments was (table 5.1). We also
record the appearance of the cellular structure for each of the experiments as either
‘regular’ or ‘irregular’. These two descriptions are illustrated in figure 5.24. The
regular structure matches the sketches of Veronis in figure 5.22a with a repeating
lattice of tessellating hexagons. The irregular pattern still shows a cellular structure,
but the individual vortices no longer take regular shapes and hence do not tessellate
to form a regular lattice. Instead we see each cell appearing as an anticyclonic
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(a) Sketch taken from Veronis (1959). (b) Fluorescein images from experiments.

Fig. 5.23 Side view of the hexagonal cells

spiral at seemingly random positions, sometimes interfering with neighbouring
cells.

Based on our estimations of critical Rayleigh number in table 5.1 we see that
the irregular structure is associated with higher levels of supercriticality. This is
to be expected since the convective structure transitions to a turbulent state as the
forcing continues to increase. What is interesting, however, is that we observe
a regular cellular pattern for a subcritical Rayleigh number (experiment 3). We

(a) Regular cell structure. (b) Irregular cell structure.

Fig. 5.24 Illustration of different cell structures.
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believe this is due to errors in estimating the Rayleigh number for our experiments
based on the temperatures of the base and surface as discussed previously. Future
investigations might make more accurate estimations of these values, and further
explore the transitions between different states and how the wavelength of the cells
varies.

5.4 Discussion
The work described in this chapter was intended to be a series of preliminary
experiments to explore whether it is possible to replicate the behaviour seen in the
simulations of the preceding chapter in a laboratory setting. As such, many of the
results are qualitative in nature and serve mainly to guide future experimental work.

We have seen that it is possible to form large scale vortices using this experi-
mental set-up, but that the flow could transition between a single cyclonic vortex
and a dipolar state. We hypothesise that these may be modal solutions that occur in
the absence of enforced axial symmetry. In order to explore this idea further it is
necessary to gather more results and perform a modal decomposition to examine
the contents of the overall structure. It would be interesting to capture the transition
between the dipolar and single vortex states and examine this in terms of different
modes. One possible explanation is that the growth in asymmetric modes is driven
by asymmetries in convection that locally enhance vortex stretching, as suggested
by Reasor et al. (2000).

We did observe one vortex that resembled our simulations, with fluid spiralling
anticyclonically outwards at the upper surface. This flow did not, as far as we could
tell, display an eye at the centre, and when we increased the forcing it became
unsteady and highly three-dimensional. We note that that a number of the flows
we observed displayed asymmetries that could not have existed in our simulations
due to the assumption of axial symmetry. This is one of the benefits of performing
laboratory experiments.

The main difficulty in performing these experiments accurately is due to the fact
that they are highly sensitive to a number of parameters. Perhaps the most significant
of these is the temperature gradient that has to be maintained over the depth of
the fluid. Since this is a relatively small distance in our experiments (30 mm)

142



Chapter 5. Experimental investigation 5.4. Discussion

the temperature difference was also quite small (≈ 1 ◦C). This is comparable to
the error in the thermocouples and the accuracy of the heating system, making it
difficult to control and giving errors in the estimation of the Reynolds number. If
the heating is too low then we fail to generate motion, instead obtaining warm fluid
through conduction. If the heating is too high then it results in a highly convective
three-dimensional system. The parameter range between these two states was small
and difficult to control in our experiment.

To tackle this issue we might consider using a larger tank. This would allow a
greater depth of working fluid and hence a larger temperature gradient. An additional
advantage to this would be that a larger tank requires faster rotation which would
reduce the spin-up time. The characteristic spin-up time, 1/

(
Ω
√

Ek
)
= H/√νΩ

(Davidson, 2013), is currently around 5 minutes. This means that the experiment
must be left between 30 and 60 minutes to reach a state of solid body rotation before
heating can begin. A larger tank would, however, be more prone to asymmetries
which we have already seen affect the experiments.

Though we took care to match the Reynolds number, Ekman number, and aspect
ratio of our experiments to the simulations as best we could, the one parameter we
had little control over was the Prandtl number. Since this is a material property
there is little that can be done to influence it besides changing the working fluid,
and the value for water is an order of magnitude different from that used in the
simulations. Though the work of Oruba et al. (2018) suggests that the influence
of Pr on eye formation is relatively weak, they do not explore this far. Future
work might make use of simulations to explore the influence of much larger Pr

and understand how the system will behave with water as a working fluid. It is
worth noting that simply using a different liquid for the working fluid would be a
challenge because any that match the desired parameters tend to be rather exotic
and tightly controlled, for example liquid metals or Benzene. As an alternative one
might explore using a gas as the working fluid since they typically have Prandtl
numbers closer to 0.1. However, due to the reasons already discussed in section 5.2
we believe a liquid is still the most practical approach.

A final implication from our investigations was highlighting the importance
of the lower boundary condition. Though we tried using a base plate to limit
conduction, we were not able to evaluate how successful this was. It is clear
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that there were limitations, however, since strongly heated experiments displayed
three-dimensional convection reminiscent of a constant temperature boundary.
In order to better evaluate the nature of the thermal boundary condition, future
experiments might make use of heat flux sensors installed on the lower boundary.
It might also be worth considering a different method of heating. It would be
better to re-design the system to provide heat across the entire base. Alternatively
we might explore electric heating. This would simplify the experiment by no
longer requiring refrigerant to be exchanged between the inertial and rotating
frames. It could also provide better control over the Reynolds number by using a
feedback loop connected to the thermocouples. It might also be worth exploring
the possibility of approximating a constant heat flux condition through the use of
multiple separate electric heating elements, though this approach entails numerous
practical difficulties as discussed.

In terms of improving the measurements taken during the experiment, the main
issue we experienced was the inability to perform measurements at the bottom of
the tank due to the thermal insulation interfering with the light sheet. It would have
been extremely useful to examine the lower layers using PIV measurements and any
future experiment design should ensure that this is possible. Another development
to the PIV measurements might be to make use of a laser lighting sheet as was done
by Sukhanovskii et al. (2016b). The LED annulus provides a sheet whose thickness
is large relative to the depth of the fluid. A future study might also wish to use
multiple light sheets, rather than just the one available during our experiments. This
would allow the entire depth of each run to be imaged, rather than being restricted
to a single plane each time. Such an arrangement is described in Marshall & Read
(2018).

Another improvement to the PIV system would be the ability to image the
poloidal plane. This would be the best way to understand the internal structure
of the flow, and be useful in a system with secondary flow. We attempted this in
our experiments by shining collimated light from the side, but found the curved
surface of the tank caused significant dispersion of the beam. It would be better to
illuminate the flow from above in a similar manner to Sukhanovskii et al. (2016b).
A similar effect is observed when imaging from the side of the tank. The curved
surface significantly distorts the image away from the centre due to refraction. A
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common approach to overcome this is to insert the cylindrical tank into a square
one, and fill the space between the two with water. Since water has a similar
refractive index to perspex there is negligible distortion to the image.

The practical implications from our experiments are just as important as any of
the scientific results. Since the investigations were performed over a short period
of time using pre-existing apparatus they were not expected to produce highly
accurate results. Instead they were intended to be a preliminary study examining if
it might be possible to explore the model presented in chapter 4 in the laboratory.
We have shown that it is possible to generate large scale vortices, some of which
resemble the flow in our simulations. As a result of these investigations we have
highlighted a number of improvements that could be made in the design of any
future experiment. The overall conclusion is that the early results are promising,
and that it is worth studying this phenomenon in the laboratory in the future. To
do so, however, one would need to invest in an improved set-up and pay particular
attention to the implementation of the lower thermal boundary condition.

5.5 Summary and outlook
In this chapter we described a series of laboratory experiments intended to examine
the possibility of replicating our simulations. We have shown that it is possible to
build a laboratory experiment that is similar to the model used in our simulations.
Furthermore, we found that it is possible to generate large scale vortices using this
set-up, some of which bear a closer resemblance to our simulations than others.
With further work to explore the parameter space more thoroughly, taking more
time to repeat experiments and perfect techniques, it should be possible to narrow
down and reproduce the more promising experiments reported here. In addition
there are a number of suggestions we can make to improve future experiments.
These have been summarised below.

Unfortunately none of our experiments displayed an eye at the centre of the
vortex so we made little progress in answering the questions raised at the start of
this chapter. We do not believe that it is impossible to perform this experiment, but
it certainly requires further work. We believe that the main issue at present relates
to the difficulty of enforcing a fixed flux boundary condition which is critical to the
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development of the vortex. With more work we hope that the experiment would be
able to reliably generate a vortex in which the possibility of generating an eye can
be explored and the internal structures studied in more depth.

In addition to investigating the model of chapter 4, we also performed some
experiments outside of this parameter regime that displayed rotating cellular
convection. This is an interesting topic with much theoretical work performed
by Chandrasekhar and Veronis, but relatively few examples of the phenomenon
being observed in the laboratory. Our imaging with fluorescein shows not only
the hexagonal lattice of cells, but also the path taken by the fluid within cells. We
see how the fluid rises upwards at the centre of the cells following an anticyclonic
helical path radially outwards at the top. It is nice to have clear visualisations that
can be compared to the theoretical descriptions. We made calculations of criticality
for the experiments, but believe there to be significant errors in these estimations at
present.

These experiments were intended to be a short series of investigations to
investigate laboratory experiments as an avenue of research into eye formation. A
large amount of time was spent developing and learning to use the apparatus. It is
hoped that the work described here might inspire future investigations that build
upon our work and spend time fine-tuning the parameter regime to yield results.

5.5.1 Suggestions for future experimental work
A number of recommendations were made for future experiments as a result of
our preliminary study. These are detailed above in our discussion but can be
summarised as follows:

• Development of the lower boundary heating to provide a better approximation
to constant flux.

• Development of the flow visualisation and PIV set-up to capture more of the
flow, in particular the poloidal plane.

• Numerical investigation into the influence of large Prandtl number on eye
formation.
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In light of the results from our investigations, we suggest that future experiments
might focus on:

• Repeatable generation a large-scale cyclonic vortex.

• Performing modal decomposition to examine the flow structure and charac-
terise azimuthal asymmetries.

• Imaging the poloidal plane of the experiment as well as horizontal planes
down to the boundary layer.

• Exploring eye formation in a large-scale cyclonic vortex.
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Chapter 6

The evolution of laminar thermals

In this chapter we investigate the development of laminar thermals. We begin
(section 6.1) with an overview of thermals in the atmosphere and the motivation
for this study. We discuss work by previous authors looking at the development of
thermals, both laminar and turbulent, noting that there are gaps in our understanding
that we might seek to fill. In particular, we note the opportunity to provide a
mathematical framework for the entire life cycle, rather than examining each stage
separately. Such a framework is developed in section 6.2.

We present a series of numerical simulations of axisymmetric, isolated, laminar
thermals that develop from buoyant blobs. We find that, as time progresses,
the thermals transition through a number of distinct stages, undergoing several
morphological changes before ending up as a vortex ring. We discuss this life cycle
in sections 6.4 - 6.8, starting with an overview before taking a closer look at the
key stages; buoyant blob, mushroom cap, and buoyant vortex ring. We also discuss
how successive vortex rings may form from the wake of the first.

In section 6.9 we examine the effect of Reynolds and Prandtl number, finding
that viscous effects are relatively unimportant at early times, but that thermal
diffusion can have a significant impact on development. We show that the early
stages of development are key in determining the final properties of the ring, with
rings consistently containing the same proportion of the initial heat and having
a consistent vorticity flux. The key findings of the study are then summarised in
section 6.10.
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The work of this chapter appears, in a reduced form, in Atkinson & Davidson
(2019).

6.1 Introduction
The evolution of isolated patches of buoyant fluid is, on the surface, a relatively
simple problem in fluid mechanics, yet it turns out to be more complex than might at
first be thought. Parcels of fluid that move and evolve relative to their environment
under the action of the buoyancy force are often known as thermals, a name taken
from the atmospheric phenomenon exploited by birds and glider pilots (Scorer,
1978) but also used to describe a wider range of buoyant phenomena.

Atmospheric thermals of the kind used for gliding develop as a result of
concentrated low-level heating. This can be from natural sources, the most common
example being solar heating, or man-made, for example cities or factories. The
general approach adopted by both birds and pilots upon identifying a thermal is
to fly into the rising air. Once they enter the thermal they fly around in circles,
staying within the rising air and being lifted to a greater height. Rise velocities can
vary depending on conditions, but are typically several metres per second. Once
they reach the top of the thermal birds and pilots exit, beginning a slow descent
and looking for the next thermal by which they may continue their journey. This
method of flying is illustrated in figure 6.1 and is incredibly energy efficient.

Fig. 6.1 The gliding process, from FAA & NOAA (1975)
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Pilots are trained to look for subtle signs of thermal activity on the ground
such as colour changes due to temperature, topographic features that may actively
promote thermal formation, and the motion of dust or vegetation indicating the
convergence of air. To the untrained eye, however, the effect of atmospheric
thermals can most easily be seen in the form of cumulus clouds, such as those in
figures 6.2a and 6.2b. As warm air near the ground rises its temperature drops
following the lapse rate. As it continues to rise, the temperature of the air eventually
falls below the dew point causing water vapour to condense, becoming visible as
a cumulus cloud. As it condenses, latent heat is released from the water vapour.
This, in turn, drives further convection causing the thermal to continue ascending,
in some cases to form a towering cumulus (cumulus congestus) formation such as
those in figures 6.2c and 6.2d. The tower of cloud traces the path of the thermal as
it ascends above the dew point.

In some cases, when there is much moist convection and sufficient atmospheric
instability, cumulus clouds may develop further into cumulonimbus and rise even
higher. These may be cumulonimbus calvus (figure 6.2e) or, in regions of deep moist
convection, cumulonimbus incus that rise to the tropopause to form distinctive anvil
tops (figure 6.2f). Cumulonimbus formations are often accompanied by storms and
may give rise to other atmospheric phenomena such as waterspouts. Of course, by
the time we reach this stage we have left behind the notion of an isolated patch of
buoyant fluid for processes that occur on a much larger scale in regions of deep
convection.

Returning to the activities of gliders, they separate thermals into two forms, as
illustrated in figure 6.3 which is taken from the Aviation Weather Handbook (FAA
& NOAA, 1975). 6.3a shows what is known as a thermal column or ‘chimney’, but
would be more familiar to fluid dynamicists as a plume. Here air is continuously
heated at the ground and rises upwards in a steady stream. Sometimes, when
heating is slow or intermittent, the rising warm air may be pinched off to form
what pilots refer to as a ‘bubble’ thermal. This isolated patch of buoyant fluid is
what fluid dynamicists would refer to as a thermal. Figure 6.3c shows the theorised
structure of a bubble thermal. As it ascends the parcel of air wraps up into a
turbulent vortex ring with air rising fastest at the centre surrounded by a downdraft.
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(a) Fair weather cumulus.
Ralph Kresge, NOAA

(b) Cumulus on the Colorado Plateau.
Sean Linehan, NOAA

(c) Towering cumulus.
James Lee, NOAA

(d) Towering cumulus, West Virginia.
Janet Ward, NOAA

(e) Cumulonimbus calvus over
Connecticut.
Versageek

(f) Cumulonimbus incus with distinctive
anvil top.

Hussein Kefel

Fig. 6.2 A variety of cloud types associated with thermals and moist convection.
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(a) Chimney thermal (b) Bubble thermal (c) Vortex ring structure of a
developed bubble thermal

Fig. 6.3 Illustrations of thermals for gliding from FAA & NOAA (1975)

The importance of understanding these flows was recognised by Scorer (1957)
who performed a series of experiments to characterise turbulent thermals. By
tipping dense sodium sulphate solution into fresh water he was able to observe
how thermals grew in size for different values of buoyancy. Under the Boussinesq
approximation the motion of negatively buoyant fluid is the mirror image of that of
positively buoyant fluid with the same absolute value of buoyancy. As a result it is
possible to conduct experiments ‘upside-down’ and reach the same conclusions
using dense, sinking fluid instead of light, rising fluid. This is a popular choice
amongst experimentalists since it is far easier to constrain and release dense material
at the top of a tank than light fluid at the base. Scorer’s experiments provide support
for an axisymmetric model that predicts a turbulent mass of buoyant fluid will have
cap-height h and radius R scaling in time as h ∼ R ∼ t1/2. Some comparisons are
made to towering cumulus formations in the atmosphere, but it is noted that the
model does not include the effects of latent heat release that generate additional
buoyancy as the thermal rises. The work does, however, qualitatively replicate
the behaviour seen in the atmosphere to provide an understanding of the physical
effects that influence thermal motion.
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Fig. 6.4 Laboratory observations of a laminar thermal.

It is worth noting that at the end of his study Scorer mentions the work of
Turner (1957) on buoyant vortex rings. It had long been theorised that turbulent
thermals in the atmosphere develop a vortex ring-like structure, and the late stages
of Scorer’s experiments lend support to this. He observes that thermals become
‘hollowed out’ by exterior fluid, with velocities around the cap being reminiscent of
a vortex ring-like structure. A brief but important comment by Scorer that we shall
return to at length during our study of laminar thermals is that the circulation, or
vorticity flux, of a thermal can only increase when there is buoyant material on the
symmetry axis.

This early work by Scorer has been extensively built upon with further investi-
gations, simulations, and models being developed for turbulent thermals and cloud
formations. The laminar analogue is somewhat less well studied however. An
early description of the phenomenon can be found in On Growth and Form by
D’Arcy Thompson (1961) with a buoyant blob of fluid being the start of a ‘long
story’ that is ‘deserving to be considered’. He describes an array of ‘beautiful
vorticoid configurations’ as the phenomenon develops, noting its resemblance to
the medusa or jellyfish. This behaviour is illustrated in figure 6.4 which shows an
experiment conducted as part of this study. The experiment is similar to that of
Sànchez et al. (1989), where a dyed buoyant thermal is released into fresh water.
Following release, the thermal has developed into a mushroom cap with a wake
which subsequently detaches. The cap then wraps up into a buoyant vortex ring.

Further inspiration might be drawn from another geophysical phenomenon;
volcanic vortex rings. These have been observed for many years at locations all
over the Earth. The most extensive records are for the volcanoes Etna and Vesuvius
in Italy, where the emission of rings has been recorded in literature since at least
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1724, as summarised by Fuentes (2014). An early description of the phenomenon
can be found in della Torre (1755) from which the image in figure 6.5a is taken.
This shows Vesuvius from the town of Boscotrecase (now part of Naples), 6 km
to the southeast of the crater. The Neapolitan professor of physics describes the
rings, noting that ‘To the sight they seemed to rise twice as high as the mountain is
from Atrio. They were of a very white colour, and they were made of a matter so
dense and persistent that there was one that stayed in the air for more than one
quarter of an hour, and another one that stayed more than three. They disappeared
very slowly as the matter forming them rarefied and diluted.’ Figure 6.5b shows a
photo of such a ring taken at Mount Etna. The ascending ring of buoyant material
is made visible against the sky by smoke and steam in its core.

Early efforts to explain this phenomenon (Capocci, 1846) centred around the
ejection of buoyant material from an orifice in a similar manner to the rings of
Turner (1957). As a result it was hypothesised that the rings resulted from the rapid
pulsation of gas from narrow vents. There is a great deal of sensitivity to orifice
shape and ejection velocity for stable ring formation to occur in this way however.
Due to a lack of observations at the point of formation for volcanic rings there is
still no clear consensus on how they form (Whitehouse, 2000). It is clear that they
must be composed of buoyant material, since they expand radially as they ascend,
and we note that the ring of figure 6.5b bears a close resemblance to late stages
of the experiment in figure 6.4. Could it be that these rings form from parcels of
buoyant air ejected from the volcano without the need for a suitably shaped orifice
or starting impulse? A description that might give us reason to at least consider this
theory can be found in the autobiography of Charles Babbage (1864) who observed
volcanic rings whilst visiting Vesuvius in 1828. He recounts ‘The situation of my
apartments during my residence at Naples enabled me constantly to see the cone of
Vesuvius, and the continual projections of matter from its crater. Amongst these
were occasionally certain globes of air, or of some gas, which, being shot upwards
to a great height above the cone, spread out into huge coronets of smoke, having a
singular motion amongst their particles.’ Could these ‘globes’ be similar to the
starting buoyant blob of figure 6.4 that wraps up into a ring?

Motivated by what lies beneath volcanoes, Griffiths (1986) investigated the
development of thermals in high viscosity fluids in an effort to understand motions
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(a) Sketch of rings over Vesuvius
From della Torre (1755) digitized by The Getty Research Institute and made

available through www.archive.org.

(b) Ring above Mount Etna
Angelo Salemi

Fig. 6.5 Volcanic vortex rings
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in the mantle. He observed that the thermals formed a cap, sometimes developing
further into what he called a ‘toroidal chemical ring’. The existence of distinct stages
of development is apparent from these observations, but a detailed examination
of the different structures and clear explanations for their formation is not readily
available. Shlien & Thompson (1975) and Shlien (1976) performed experiments
with heat injection at a point, and observed the development of a thermal from a
point source that starts to accelerate, develops into a cap-like structure, and then
into a buoyant vortex ring. They note these key stages of development, but their
experiments are limited in that they only observe the temperature field through
shadowgraph data. Their discussion of the cap is brief, simply noting that the
thermal transitions through this stage en route to forming a buoyant vortex ring.
Their observations of the ring match well the theory of Turner (1957). Aside from
these studies, the different stages in the life cycle of a laminar thermal are more
frequently studied as separate phenomena in their own right. To the best of our
knowledge, no-one has yet treated the blob, cap, and ring as different stages of the
same process and tried to link their development.

A model for the mushroom-like cap that develops from a buoyant disturbance
is presented by Davidson et al. (2007). They make predictions about how the
structure and velocities of the cap will develop, but without any comparison to
experiments or simulations. As a result they do not make any observations about
how the cap develops into a ring, and note an apparent paradox in their model in
that the cap velocity tends towards a constant value whilst the total axial impulse of
the fluid continues to grow linearly in time.

Gharib et al. (1998) performed experiments on non-buoyant vortex rings gener-
ated using an impulsive piston. They propose the existence of a universal timescale
for the pinch off of the vortex ring from the trailing wake. At long times the vorticity
flux of the ring is constant, and equal to that of the entire domain at an earlier time
t. When t is made into a dimensionless property t∗ it is found to be independent of
the strength of the impulse generated by the piston. This is rationalised by arguing
that a stable vortex ring represents a maximum in energy subject to a given impulse
and vorticity flux. As a result, a critical non-dimensional energy can be calculated
for the vortex ring. Gharib et al. suggest that once the developing flow from the
piston drops below this critical value the ring pinches off from the developing wake
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to move away as a stable vortex ring. This theory is debated by Linden & Turner
(2001), however, who present an alternative explanation for the observations. As-
suming that the properties impulse, vorticity flux, and energy are conserved during
the transformation from ejected fluid into a ring, they perform a matching to the
Norbury (1973) family of vortex rings. Their results show that the formation time
t∗ resulting from maximising the vorticity flux of the ring for a given energy could
in fact be much higher than the values observed by Gharib et al.. Linden & Turner
show instead that a volume constraint (that all ejected fluid is contained within the
core of the ring) imposes a value of t∗ close to that observed in the experiments.
The analysis is independent of the formation process and they note that, for the
Reynolds numbers considered, viscous effects have little time to act during this stage.

We have performed numerical simulations of laminar thermals and observed
an interesting life cycle in which a buoyant perturbation develops, via an initial
transient, into a mushroom-like cap structure, and then into a buoyant vortex ring.
This behaviour was illustrated in figure 6.4. The primary purpose of this study is
to characterise the entire life cycle of a laminar thermal, from its initiation and
development into a mushroom-like cap, through to the separation of a buoyant
vortex ring at the front and the development of the resulting wake. One surprising
finding is that the wake can itself roll up to form a secondary vortex ring.
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6.2 Development of a mathematical framework
Consider an axisymmetric, incompressible, Boussinesq fluid where the kinematic
viscosity, ν, and thermal diffusivity, α, are both assumed independent of temperature.
The governing equations for this system are given in section 2.2. The absence
of rotation in equation (2.23) gives the following equation for the evolution of
azimuthal vorticity,

D
Dt

(ωϕ
r

)
= −gβ

r
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∂r
+ ν

1
r2∇

2
∗
(
rωϕ

)
, (6.1)

which we note can be re-written as,
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where the flux F is given by
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It follows from equations (6.1) and (6.2) that, for a localised disturbance (see
Davidson et al. (2007)),
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and
d
dt

∫
V∞

1
2

rωϕ dV =
∫

V∞
gβθ dV , (6.5)

for an infinite domain, V∞, with the fluid at rest and θ = 0 in the far field. Note that
the buoyant growth of the integral of ωϕ/r in equation (6.4) depends only upon the
centreline temperature. Equations (6.4) and (6.5) can be related to more familiar
properties of the flow through the following expressions:

Φ =
1

2π

∫
V∞

ωϕ

r
dV , (6.6)
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where Φ is the flux of azimuthal vorticity (or circulation) in the axisymmetric
system, and

L =
∫

V∞

1
2

rωϕ dV êz =
1
2

∫
V∞

(x × ω) dV , (6.7)

where the integral on the right is the net linear impulse of the fluid in an infinite
domain (x being a position vector). The property L can be related to the net
linear momentum according to L =

∫
u dV (Saffman, 1992). Note that, since the

temperature equation (2.9) requires
∫

TdV = constant across the domain, (6.5)
implies a linear growth in L,

|L| = t
∫

V∞
gβθ dV . (6.8)

Note also that, when the viscous term is weak in (6.4), it is well approximated by

dΦ
dt
= gβ

∫ ∞

−∞
θr=0 dz . (6.9)

Dimensional analysis can be performed using some characteristic length scale
and temperature for the thermal, say l and θ̂ respectively, based upon the initial
condition as discussed below (equation 6.14). There are two dimensionless groups
that define the problem, a Reynolds number Re, and a Prandtl number Pr ,

Re =
Ul
ν

, Pr =
ν

α
, (6.10)

where U is the velocity scale

U =
√

gβθ̂l . (6.11)

In addition to these dimensionless groups, a characteristic timescale, impulse, and
vorticity flux for the problem can be defined as,

t0 =
l
U

, L0 = Ul3 , Φ0 = Ul . (6.12)

We shall use these to non-dimensionalise quantities, with τ = t/t0 being dimen-
sionless time.
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We also introduce the non-dimensional variable,

γ =
l2Φ

|L| , (6.13)

as a diagnostic for the flow. Mathematically this is a dimensionless ratio of the
zeroth and second moments of the vorticity field. It tells us about the relative
compactness of the vorticity distribution around the axis; the more spread out the
vorticity is, the smaller the value of γ. This is because both L and Φ are integrals
of vorticity, but are weighted differently by factors of r. The more compact the
vorticity distribution the larger the value of Φ and the smaller the value of L.

6.3 Numerical investigations
We performed a series of numerical investigations using our axisymmetric finite-
difference code. The domain is large relative to the size of the thermal, with a
radius of R = 14 l, and a height of H = 80 l, where l is a characteristic lengthscale
of the thermal).

The boundary conditions on the domain are no-slip and adiabatic. Simulations
were performed using a mesh of at least 4000 axial × 350 radial cells, with a finer
resolution near the axis than at the edges. Spatial and temporal resolution studies
were performed by increasing and decreasing both the mesh resolution and timestep
and ensuring that the results were converged.

We use the same initial condition as Davidson et al. (2007) with u = 0 and a
Gaussian temperature perturbation of the form

θ = θ̂ exp
(
−r2 + z2

l2

)
(6.14)

in an ambient background θ = 0. The location of the Gaussian blob is r = 0 and
z = H/10 above the bottom of the domain.

A range of cases for different Re and Pr were examined, details of which are
given in table 6.1. They cover a range of Reynolds numbers with the Prandtl number
fixed at 1.0, but also include some variation in Prandtl number for a Reynolds
number of 225.8.
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Simulation Re Pr

1 71.0 1.0
2 124.8 1.0
3 175.2 1.0
4 200.4 1.0
5 225.8 1.0
6 331.9 1.0
7 504.9 1.0
8 712.6 1.0
9 225.8 2.0
10 225.8 0.1
11 225.8 0.5
12 225.8 0.75

Table 6.1 Details of thermal simulations

6.4 An overview of the life cycle
The laminar thermal passes through a number of phases during its life cycle. These
can be summarised as the buoyant blob, the mushroom-like cap, and the buoyant
vortex ring, each of which will be discussed in detail shortly. To illustrate these
stages we take a typical simulation at Re = 225.8 and Pr = 1. As we shall see,
for this simulation a blob is maintained in the time range τ = 0 - 4, the cap for
approximately τ = 7 - 17, and the ring from τ = 23 onwards.

There are a number of key events in the life cycle that characterise each of the
stages, and the transitions between them. These are illustrated below, and can be
described as follows. First, vorticity is generated by radial temperature gradients.
This results in a Gaussian distribution of ωϕ/r developing immediately following
initiation. Both the vorticity and temperature fields are shown in figure 6.6a. This
Gaussian distribution is relatively short lived, however, as the blob begins to lift
under the action of buoyancy forces. The effect of this is greatest at the centre of the
buoyant blob, as can be seen in figure 6.6b. The temperature field is advected with
the fluid, as is ωϕ/r , although ωϕ/r continues to be generated by radial temperature
gradients.
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Fig. 6.6 Early stages in the development of a thermal. Contours of ωϕ/r (top) and
temperature (bottom) at different dimensionless times τ.
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As the blob continues to lift, it enters a stage of significant distortion, with
cooler fluid being swept in from the rear. The faster moving fluid near the axis
advects the temperature andωϕ/r upward into a rapidly thinning front at the leading
edge of the blob. This can be seen in figures 6.6c and 6.6d from τ = 3.5 - 4.5. In
addition to this thinning front, the higher temperature fluid is also displaced radially
outwards into a cylindrical annulus, carrying with it vorticity. This is illustrated
in figure 6.6d, and marks the end of the buoyant blob and transition towards the
mushroom cap.

This transition from blob to mushroom-like cap is characterised by the roll-up
at the sides of the thermal taking place from τ = 5.0 - 7.0. The vorticity that has
been displaced radially outwards in a concentrated annulus below the front induces
a rotational motion and begins to wrap up on itself, as shown in figure 6.7a, to
form the lobes that will eventually become the buoyant vortex ring. The induced
motion of this vorticity field sweeps fluid upwards at the centre of the thermal and
radially outwards at the front, causing the front to thin at an ever increasing rate as
predicted by Davidson et al. (2007).

The mushroom cap is established by figure 6.7b, τ = 7.0. The thermal continues
to entrain fluid at the rear, increasing its volume and stretching the front further to a
point at which it pinches apart at the axis. As can be seen by comparing the upper
images of figures 6.7b and 6.7c, this occurs between τ = 7.0 and τ = 8.5, with
further investigation showing it to be around τ = 8.0. This is the first of several
morphological changes. It can be seen in figure 6.7c that once punctured this thin
front is rapidly swept up into the lobes of vorticity. Below the mushroom cap a
warm wake forms where the thermal has passed through. Although cooler than
the cap, high radial gradients in temperature define a sharp edge to this region
generating new vorticity that forms trailing tendrils below the cap. These can be
seen developing in figures 6.8c and 6.8d.

Up until the formation of the cap, the thermal has been accelerating from
its starting position as we will show shortly. Once the mushroom cap has been
achieved, however, the acceleration falls and the cap tends towards a constant
velocity, u, as predicted by Davidson et al. (2007). Fluid continues to be entrained
at the base of the cap as the vorticity in the lobes induces a flow radially inwards
and up along the axis. As a result of this motion the trailing tendrils of vorticity
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Fig. 6.7 Intermediate stages in the development of a thermal. Contours of ωϕ/r
(top) and temperature (bottom) at different dimensionless times τ.
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Fig. 6.8 Later stages in the development of a thermal. Contours of ωϕ/r (top) and
temperature (bottom) at different dimensionless times τ.
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are swept inwards towards the axis and stretched vertically resulting in necking
that can be seen developing in figure 6.8b. Eventually this reaches a point where
the stem of vorticity connecting the cap to the wake becomes sufficiently weak,
as illustrated in figure 6.8d, that we can consider two distinct regions of flow; the
buoyant vortex ring and the wake. This transition process is illustrated in figures
6.8b to 6.8d and marks the second morphological change. The upper part of the
stem, which is connected to the cap, is swept upwards and out along the front of the
cap to eventually become wrapped up in the buoyant vortex ring. As a result, the
cap shape is preserved until around τ = 17.0. Beyond this point the vast majority
of the vorticity has been swept up in the ring and it can now be regarded as a
separate region of flow moving off ahead of the wake. The lower portion of the
trailing vorticity stem is subsumed by the wake, and begins to display qualitative
similarities to the developing thermal of figure 6.6d. Indeed, we find that after
a period of time the wake can evolve in a similar way to the initial thermal and
produce a second mushroom-like cap that separates in the same way to form a
secondary vortex ring. The early stages of this behaviour can be seen in figure 6.9
and will be discussed in section 6.8.

There are a number of quantities of interest that can be observed over the course
of this cycle. Plotted in figures 6.10 and 6.11 are the impulse L and flux Φ for
the entire flow, and also individually for the ring and wake. This was achieved by
splitting the domain into two regions with the mushroom cap or ring contained
within the upper one and the wake below. This is indicated in figures 6.8 and 6.9
by the white dashed lines. (The white lines indicate the minimum in

∫
ωθ dr as a

function of z as a way of distinguishing the two parts.) It can be seen from figure
6.10 that the impulse for the overall flow increases linearly in time, consistent with
(6.8), as does the impulse of both the cap-come-ring and the wake. Figure 6.11
shows that the vorticity flux of the overall flow increases monotonically, but the
rate of increase slows as hotter fluid is swept away from the axis. This is consistent
with equation (6.9). The flux of the cap attains a constant value as the buoyant
ring is formed. The dimensionless parameter γ can be calculated and is plotted
in figure 6.12. It can be seen that γ for the entire flow initially begins to fall at an
increasing rate as the blob accelerates before starting to level off as the cap and
ring form. Once formed, γ of the cap/ring decreases as τ−1, reflecting the linear
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Fig. 6.9 Late stages in the development of a thermal. Contours of ωϕ/r (top) and
temperature (bottom) at different dimensionless times τ.
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Fig. 6.10 Evolution of impulse for the thermal, the first ring, and the wake. The
grey regions denote transition between stages whilst i-iv denote key points in the
life cycle as discussed in the text. These are: i the end of constant acceleration
and the blob phase, discussed in 6.5 ; ii the inflexion point in γ and beginning of
roll-up, discussed in 6.5; iii the pinching apart of the cap front, discussed in 6.6; iv
the point at which the ring core becomes stronger than the stem, discussed in 6.6; v
the separation of the buoyant ring and wake by necking, discussed in 6.7.2. Note
that iii occurs shortly after the beginning of the mushroom cap phase discussed in
6.6. The dashed black line is the total impulse predicted by equation (6.8).

growth in L and constant Φ. γ of the wake initially rises, reaching a maximum as
the wake begins to roll up into a second cap around τ = 18, beyond which point it
too falls monotonically like the first ring.

Figure 6.13 shows the maximum dimensionless vertical velocity on the axis. It
can be seen that the blob initially undergoes a period of constant acceleration until
around τ = 2.5. After this the acceleration decreases, with the velocity attaining
an approximately constant value from τ = 7.0 - 15.0. This coincides with the
mushroom cap phase of the thermal, as predicted by Davidson et al. (2007). Beyond
this the velocity begins to fall as the thermal transitions into a buoyant vortex ring.

We will now discuss in more detail the different stages of the flow explaining
the observations above and examining the transitions between each stage.
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Fig. 6.11 Evolution of flux for the thermal, the first ring, and the wake. Points i-v
as for figure 6.10.
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Fig. 6.12 Evolution of γ for the thermal, the first ring, and the wake. Points i-v as
for figure 6.10 with the inflexion point (ii) circled.
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Fig. 6.13 Maximum dimensionless vertical velocity on the z-axis against τ. Points
i-v as for figure 6.10.

6.5 Stage 1: The buoyant blob
The first stage in the development of the thermal is take-off of the initial temperature
perturbation and compression into a front. Starting with undisturbed fluid, we
initially have zero vorticity, ωϕ, and no motion. The very first stage, therefore, is
vorticity generation by radial temperature gradients (figure 6.6a). Following this,
the hottest fluid in the centre of the thermal begins to rise fastest under the action
of buoyancy, and the ωϕ/r and θ fields are compressed into rapidly thinning fronts
(figures 6.6b and 6.6c).

It can be seen from figure 6.13 that the thermal initially undergoes a period of
approximately constant acceleration. This was observed experimentally by Shlien
(1976) who state that they could offer no simple interpretation for the behaviour. It
can be understood, however, by considering the terms in equation (2.18). At τ = 0
there is no fluid motion, and u remains small for some time. Initially, therefore, there
must be a balance between ∂u/∂t and −gβθ. Since, in the absence of significant
motion, θ evolves only slowly through diffusion, the vertical velocity must increase
approximately linearly in time, i.e.constant acceleration. The neglect of u · ∇u by
comparison with ∂u/∂t is valid for times such that t ≪ l/U, and the requirement
that the diffusion of θ is small during this period is satisfied provided that Ul/α ≫ 1
(see the appendix at the end of this chapter). As the velocity increases however, the
balance of terms in equation (2.18) changes with the buoyancy now increasingly
being balanced by u · ∇u. As a result the acceleration begins to fall, and the front
of the thermal approaches a steady velocity, as discussed by Davidson et al. (2007).
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The end of the period of roughly constant acceleration marks the end of the buoyant
blob phase, with the change in force balance and approach to constant maximum
velocity marking the transition from blob to mushroom cap.

Looking at the plot of γ for the entire flow (figure 6.12), there is an inflexion
point around τ = 4.5 accompanied by a morphological change as the lobes of the
thermal begin to roll up. To understand this, note that Φ increases monotonically
according to equation (6.9) as the temperature front thins along the axis. At short
times this growth in Φ is linear, but as hot fluid is radially displaced the source
term decreases, so the value of Φ increases at an ever slowing rate. Since impulse
increases linearly in time, as discussed above, an inflexion point becomes inevitable,
with γ transitioning from γ ∼ τ0 to γ ∼ τ−1. This coincides with the transition into
the mushroom cap phase.

6.6 Stage 2: The mushroom cap
As a front forms at the leading edge of the thermal, fluid is displaced to the sides
(figure 6.6d) and vorticity collects in a torus, covered by a thin cap or front (figure
6.7b). There are trailing tendrils of vorticity to the rear that form due to the sharp
radial temperature gradients at the edge of the wake. This vorticity distribution
drives rotational motion in the r-z plane acting to sweep the upper part of the
tendrils in towards the axis. As a result of this induced motion the front now thins
at an exponential rate matching the behaviour predicted by the inviscid model
of Davidson et al. (2007). Defining the front as the region along the axis where
temperature is above 0.25 θ̂ we can plot its thickness and confirm that it thins
exponentially from τ ≈ 5.5, where roll up into the cap begins, until τ ≈ 8 when the
cap starts to fade through viscous diffusion. This is shown in figure 6.14.

Another result of our study in support of the model of Davidson et al. (2007)
is that, after the initial transient and roll-up, the velocity of the cap attains an
approximately constant value. This is shown in figure 6.13 for the duration of the
cap phase from τ = 8 to τ = 17. We choose the point at which the cap attains
this velocity to mark the end of the transition from buoyant blob to mushroom cap.
Although this behaviour was predicted by their model, Davidson et al. (2007) noted
this as an apparent paradox in their analysis since equation (6.5) requires impulse
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Fig. 6.14 Thickness of the temperature front vs. time. The dashed line indicates an
exponential rate of decay.

to increase linearly in time. For an object of constant volume, this requires the
mean velocity to increase linearly in time. They hypothesised that the result might
be explained by the generation of ωϕ being large lower down in the stem of the
mushroom. This is in fact incorrect, as our results show, with a large amount of
impulse still being generated in the cap (figure 6.10). The paradox can instead be
explained by the fact that the thermal cap expands radially. Relating linear impulse
to momentum in the form L =

∫
u dV , a scaling analysis gives L ∼ ucR3

c , where
uc is a characteristic cap velocity and Rc is the outer radius of the cap. Since uc

tends towards a constant value, we would expect Rc to scale with t1/3 in order to
be consistent with linearly increasing impulse. This is indeed what we observe in
figure 6.15 plotting R3

c against τ.
As the temperature front rapidly thins the source term in equation (6.9) decreases

and so the rate of generation of vorticity also decreases. As a result, the flux Φ
of the cap tends towards a constant value as the front is pulled apart and swept
into the lobes. The impulse L continues to increase linearly in time, and as such
γ for the cap decreases at a rate proportional to τ−1. The wake that is left behind
by the cap consists of the trailing tendrils of vorticity bounding a smear of higher
temperature fluid. As the mushroom cap moves off ahead of the wake, the height
of the wake increases, and so the rate of generation of Φ in the wake also increases
in accordance with equation (6.9). This is why γ for the wake increases over the
course of the mushroom stage.
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As the mushroom cap progresses it wraps up a significant portion of ωϕ/r

from the front and the stem into the lobes that will eventually form the core of the
buoyant vortex ring. As a diagnostic we consider the relative strengths of ωϕ/r

in the stem and the lobes of the developing ring. The value of ωϕ/r on the axis
falls below that at the centre of the forming ring at around τ = 17, marking an end
to the mushroom cap and the start of the transition into two separate structures;
buoyant vortex ring and wake. We see from figure 6.12 that the end of this stage is
marked by the wake approaching a maximum in γ. As the stem becomes thinner,
the wake ceases to lengthen along the axis and so the rate of generation of Φ in the
wake remains roughly constant. Since L increases at a constant rate γ experiences
an extremum.

6.7 Stage 3: The buoyant vortex ring
The mushroom cap is subsequently observed to evolve into a buoyant vortex ring
that moves off ahead of the trailing wake. We consider initially the motion of this
ring after separation using the same methodology as above, before then tying these
flow regimes together and examining the separation process.
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6.7.1 The evolution of the ring
For a vortex ring containing all of its buoyant material in its core, equation (6.9)
tells us that the flux (or circulation) of the ring must remain constant. In addition to
this, equation (6.8) tells us that the impulse of the vortex ring must be increasing
linearly in time at a rate proportional the thermal energy contained within the core
of the ring. Both of these results are in agreement with the analysis of Turner
(1957). For a thin-cored vortex ring of mean radius R and flux Φ, the impulse
can be approximated (from equations (6.6) and (6.7)) as L ≈ πR2Φ. For this
to be consistent with the linearly increasing impulse and constant flux, the ring
radius R must increase at a rate proportional to t

1
2 . This is again in agreement with

the analysis of Turner (1957) and consistent with the results of our simulations.
Figures 6.10 and 6.11 show that the flux of the ring remains constant whilst its
impulse increases at a constant rate. Plotting R2 against τ in figure 6.16 confirms
that the radius of the ring scales as R ∼ t1/2. As was seen in the cap phase,
the seemingly paradoxical result that the ring is decelerating (figure 6.13) whilst
impulse is increasing can be explained by the fact that the radius is increasing, as
we now discuss.

For a vortex ring of the kind sketched in figure 6.17 with global radius R, core
radius a (a << R1), and a uniform distribution of vorticity ωθ in the core, the

1Of course, during the formation process from a thermal the developing vortex ring is not
initially thin-cored.
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Fig. 6.17 Schematic cross section of a thin-cored vortex ring.

velocity of the ring, V , can be calculated (Saffman (1992); Batchelor (1967); Lamb
(1932)) as:

V =
Φ

4πR

[
ln

(
8R
a

)
− 1

4

]
. (6.15)

Given the results above, this tells us that buoyant vortex rings must decelerate as
they rise, with a rise velocity scaling as t−1/2 ln t. In addition to this we note the
slightly counter-intuitive result (as did Turner (1957)) that the more buoyant a ring
is, the faster it will expand radially and decelerate. This follows from the result
L ≈ πR2Φ and the fact that Φ is constant whilst the rate of increase of L, and hence
rate of radial increase, is proportional to buoyancy of the ring.

6.7.2 The separation process
We now return to consider the separation of the ring from the wake following the
end of the mushroom cap phase (around τ = 17). Let us start by considering more
closely the flow between the two separating structures, ring and wake, by looking
at the streamlines in figure 6.18a. We see that the stem connecting the ring and
wake experiences a stretching flow in the axial direction due to the poloidal velocity
induced by the ring. Figures 6.18b and 6.18c show strain rates of the fluid. ϵzz is
the axial strain rate in the axial direction; how much uz changes in the z direction i.e.
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Fig. 6.18 Vorticity, strain-rate components, and axial velocity of the thermal at
τ = 19.0.

how much the fluid is being stretched axially. ϵrz is a shear strain rate describing
how ur changes in the z-direction and uz changes in the r-direction. It can be seen
that the dominant strain rate in the stem is ϵzz, with positive values from the base
of the stem to midway up, consistent with axial stretching. Past the core of the
ring the axial strain rate becomes negative due to the proximity of the cap. The
main contributions of ϵrz occur where fluid is being stripped away in the cap and
wrapped up into the core of the ring, away from the axis and stem.

It is important to note here that as the ring and wake separate, the wake rises
slower than the ring. This means that the stem connecting the two structures is
being stretched from the base of the stem upwards. The vertical velocity (figure
6.18d) is largest on the axis at the height of the core of the ring, but small at the
base of the stem. So the lower part of the stem is being stretched in the axial
direction while squeezed in by the entrained ambient fluid. The effect of this is a
rapid reduction in the value of ωϕ/r on the axis of the stem, as we now discuss.

Consider a cylindrical material volume that encloses part of the stem, as shown
in figure 6.19. If we track its progress in the range τ = 15 - 21, we find that the
volume undergoes large axial stretching whilst contracting radially to conserve
volume. The start and end points are shown in figure 6.19. The volume integral of
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Fig. 6.20 Vorticity flux for a material volume enclosing the stem

ωϕ/r (Φ) is plotted in figure 6.20 and we see that Φ is approximately conserved,
reflecting the relative weakness of the thermal source term in (6.9). Nonetheless,
it is clear from our results that the vorticity on the axis of the stem weakens to a
point at which the ring can be considered as a separate entity from the wake to
which it was once attached. Since the temperature gradients in the stem are small
we can approximate equation (6.1) by

D
Dt

(ωϕ
r

)
≈ ν

1
r2∇

2
∗
(
rωϕ

)
. (6.16)
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We now see that as the stem is stretched and thinned by advection, we expect
diffusion of ωϕ/r radially outwards. The process of axial stretching therefore helps
maintain high gradients in ωϕ/r, enhancing the radial diffusion. Eventually this
radial diffusion weakens the centreline value of ωϕ/r sufficiently such that we no
longer consider it a connection between ring and wake.

Thus the end of the transition to a buoyant vortex ring occurs when ωϕ/r in the
stem connecting the ring to the wake becomes sufficiently weak by diffusion that
we can consider them to be two individual structures. Based on this we define the
end of the transition period as the time at which ωϕ/r in the stem falls below 20%
of that in the core of the ring. This occurs at τ = 24. By this point the ring has
attained a limiting value of Φ which persists for the remainder of its ascension.

6.8 The wake and multiple vortex rings
We have discussed the formation of a buoyant vortex ring and its detachment from
the wake. Of further interest, however, is the fact that subsequent mushroom caps
may form from the thermal wake. These, in turn, may become buoyant rings that
detach and follow the first. This behaviour can be seen in both figures 6.9 and 6.21.
The impulse and flux of the thermal wake is always increasing in time through the
same processes as for the initial buoyant blob (equations (6.8) and (6.9)). As a
result we can have further caps and rings forming that follow the same process of
development.

Looking at the wake in figure 6.8 we see that the radial temperature gradients
generate trailing tendrils of vorticity. As these strengthen they become unstable
and begin to roll up on themselves, moving in towards the axis. Following these
developments further into figure 6.9 we see the development of the new mushroom
cap. The base of the stem that was left by the primary vortex ring is radially
stretched to form a new front. The trailing tendrils that wrapped up become the
lobes. The cap then proceeds to develop in much the same way as the primary.
Looking at γ for the wake in figure 6.12, we note that the roll up of the tendrils
coincides with an increase in γ as the vorticity distribution becomes more compact.
This reaches a maximum at around τ = 18 after which the vorticity distribution
expands as it wraps up to form a second mushroom cap.
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Fig. 6.21 Development of a second vortex ring from the wake left by the separation
of the primary vortex ring. ωϕ/r plotted for Re = 332

The non-dimensional impulse and flux of the primary and secondary rings are
shown in figures 6.22 and 6.23 as a function of Re. Impulse is significantly reduced
in the second ring, whilst the flux is approximately half that of the primary ring.
These reductions are, in part, because we are normalising with respect to the initial
temperature field, which is not appropriate for the wake. However, it is also clear
that the rate of increase of L has been reduced in the second ring. To understand
this we must consider again equations (6.8) and (6.9). The rate of generation of
impulse scales with the total heat, whilst the rate of flux generation depends upon
the heat on the axis. The primary ring wraps up much of the initial heat into its
core resulting in it having a much higher rate of impulse generation. An effect of
wrapping up into a ring is that hot fluid is removed from the axis, preventing any
further increase in flux. In contrast to this the wake, though containing less heat
than the first ring, remains stretched out along the axis for a much longer period
prior to wrapping up to form the second ring. As a result the flux continues to
increase. By the time it separates, the second ring contains around half the flux of
the first. Since impulse is much lower than flux for the second ring compared to
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the first, γ is larger. Following wrap up into a second ring and separation from the
wake the value of γ decreases monotonically as τ−1, just like the primary ring. The
larger value of γ for the second ring demands that it is more radially compact than
the first.

For some simulations it was observed that further vortex rings could form from
the wake of the second provided it did not experience significant diffusive effects in
temperature and vorticity. This behaviour can be seen for Re = 332 and Pr = 1.0
in figure 6.21. The primary ring has moved off ahead by τ = 32 and a second cap
has begun to form, connected to the lower wake by a stem of vorticity. By τ = 44
we see that the stem has weakened as the second ring moves off ahead. Finally, at
τ = 58, we see that the two rings are now clearly separate structures ahead of a
wake which is capped by a third developing mushroom cap.

6.9 Influence of Re and Pr

We now turn our attention to the effects of viscosity and thermal diffusion on the
development of the thermal. To do this we look at a number of simulations across
a range of both Reynolds and Prandtl number. We again use the non-dimensional
impulse and flux, in addition to other properties, to draw parallels and make
comparisons between the different cases.

6.9.1 Influence of Re

Figure 6.22 shows the impulse of the entire flow and the first and second rings
for different Reynolds numbers. It is immediately apparent that there is some
independence across Reynolds number in this range with the dimensionless impulse
of both the first and second rings being almost the same in all cases. Likewise,
figure 6.23 displays good collapse in the final flux for both rings for different
Reynolds numbers. The total flux of the domain follows the same qualitative
pattern for all Re, although we see the curves diverge at later times with more flux
generated at higher Reynolds numbers.

Note that the collapse of impulse requires that each ring contains the same
proportion of the initial heat (equation (6.8)). This is confirmed by calculating the
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Re Pr Φ1/Φ0 Φ2/Φ0 % heat1 % heat2 τring

71.0 1.00 7.8 - 56 - -
124.8 1.00 8.3 4.6 60 12 41.0
175.2 1.00 8.6 4.7 64 11 29.5
200.4 1.00 8.7 4.8 65 11 28.0
225.8 1.00 8.8 4.9 67 11 24.4
331.9 1.00 9.1 5.2 69 11 22.0
504.9 1.00 9.4 5.4 70 11 21.3
712.6 1.00 9.3 5.6 71 11 21.3

Table 6.2 Key properties for varying Re at τ = 80

thermal energy contained in the vortex rings. Table 6.2 lists the ring properties at
τ = 80 when the first two vortex rings are separate from the wake. The value %
heat gives the percentage of the initial heat contained within a ring. We see that
for a Reynolds number of 332 and above that the first ring consistently contains
approximately 70% of the initial heat, with 11% in the second ring. The Re = 226
case is slightly lower (67% and 11%) but still collapses relatively well with the
higher Reynolds number results. This behaviour is not maintained at lower Re

however. For Re = 71 we find that the first ring contains a lower proportion of the
total heat and that a second ring does not form at all from the wake as seen in figure
6.24. This observation would suggest that there is a critical point below which a
second vortex ring will not be produced.

The independence from Re at early times can be explained by noting that
the characteristic timescale t0 has no dependence on viscosity. Indeed, following
initialisation as a patch of heat in quiescent fluid, the main balance in equation (2.1)
occurs between ∂u/∂t and −gβT giving the initial acceleration. As the blob begins
to lift and roll up in to the mushroom cap, the balance transitions to be between
u · ∇u and −gβT giving a constant cap velocity as discussed. These processes
occur between τ = 0 - 15, i.e. of the order of t0. Consider a timescale based
on ν as tν = l2/ν, which is the relevant timescale for viscous effects to act given
smooth initial conditions of lengthscale l. The ratio of this to our characteristic
timescale based on buoyancy gives tν/t0 = Re. Based on this we can surmise that,
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Fig. 6.24 Development of ωϕ/r a thermal for Re = 71 (top), Re = 226 (middle),
and Re = 332 (bottom). In all cases Pr = 1. Note different scale for Re = 71.
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for sufficiently high Reynolds number, viscous effects must only come into play
at timescales somewhat longer than it takes for the thermal to wrap up into the
mushroom cap. Since this process involves the formation of the core of the vortex
ring, the ring is not significantly influenced by viscosity with its properties largely
independent of Re. These properties are then retained at longer timescales as the
ring ascends.

This is not to say that there is no effect however. It is clear from figure 6.23
that the total flux begins to diverge from around τ = 15. Since the primary ring
displays a good collapse in Φ/Φ0 the source of this discrepancy must lie in the
wake. Furthermore we know that, once formed, the ring cannot contribute to the
generation of Φ since all the heat is contained in the core (equation (6.9)). It can
be seen from figure 6.24 that as Reynolds number decreases, ωϕ/r in the wake
becomes weaker and more diffuse. To understand why this is we must consider
equations (6.1) and (6.9), and also note that these results are all for a Prandtl number
of 1. Therefore as Reynolds number falls, so does the Péclet number, and so the
effects of thermal diffusivity increase. Since the initial condition is quiescent fluid,
we can disregard the effects of viscosity at early times when there is little motion.
The same cannot be said for thermal diffusion however. Immediately following
initialisation thermal diffusion will act to spread out the heat, reducing the radial
temperature gradients that generate vorticity (equation (6.1)). For low Reynolds
number (Re = 71) this has an impact early on, with significantly lower ωϕ/r across
the entire thermal. The ring also contains a noticeably lower proportion of the
initial heat. We noted above that, once formed, the ring maintains its flux so the
main effects of thermal diffusion at later times must occur in the wake. When
thermal diffusion is larger, the warm wake will expand and temperature gradients
reduce. As a result, the generation of ωϕ/r is reduced. This leads to the diverging
lines of Φ/Φ0 in figure 6.23 and weaker ωϕ/r in the wake.

6.9.2 Influence of Pr

In order to isolate the effects of thermal diffusivity we examined the effect of
varying Prandtl number between 0.1 and 2.0 for a fixed Reynolds number of 225.8.
This introduces a second diffusive timescale based upon the thermal diffusivity, tα,
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Re Pr Φ1/Φ0 Φ2/Φ0 % heat1 % heat2
225.8 2.00 8.8 4.9 67 11
225.8 1.00 8.8 4.9 67 11
225.8 0.75 9.0 5.2 59 12
225.8 0.50 9.0 5.7 44 14
225.8 0.10 5.6 - 2 -

Table 6.3 Key properties for varying Pr at τ = 80

defined in a similar way to tν. For Pr = 1.0, tα = tν, so when the viscous timescale
is long in comparison to the formation time, so is tα. Therefore we deduce that for
Pr > 1 there should be no significant difference in the results. However, for Prandtl
numbers below 1, tα may become comparable to the formation time even when tν
remains large. In these cases we find that diffusive effects interrupt the formation
process by smearing out heat as discussed above. Table 6.3 lists the key values for a
range of Prandtl numbers at a fixed τ. As expected, for Pr > 1 the properties of the
first and second ring are identical, with formation occurring before diffusive effects
have time to act. For lower Prandtl numbers the first vortex ring contains less of the
initial heat and both the rings and wake are weaker in ωϕ/r . This is illustrated in
figure 6.25. For the case Pr = 0.1 it becomes particularly apparent how diffusion
destroys the sharp radial gradients in temperature that lead to the generation of
vorticity tendrils and secondary rings. The proportion of heat contained in the
second ring actually increases as Pr falls, although this likely results from the fact
that the wake is left with increased heat. For Pr = 0.1 although a second cap is
developing at our chosen value of τ it has not progressed enough for its values to
be well defined.

Since viscous effects have little impact at the early stages of the development
process we see that, provided the effects of heat transfer are also negligible, the end
of the blob phase (constant acceleration), start of the cap phase (constant velocity,
R3 ∼ t), and end of the cap phase (stem weaker than lobes) all develop according to
a universal timescale. There is some discrepancy at the end of the transition to the
ring however which is recorded in table 6.2 as τring. We find that as Re falls, the
time for ωϕ/r in the stem to fall below 20% of that in the core increases. Saffman
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Fig. 6.25 Development of ωϕ/r a thermal Re = 225 for Pr = 1.0 (top), Pr = 0.5
(middle), and Pr = 0.1 (bottom).
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(1970) examined the effect of viscosity on thin cored vortex rings. He showed that
diffusion of vorticity will cause the core radius a to increase at rate (4νt)1/2. This
is accompanied by a decrease in peak vorticity. The rise velocity of equation (6.15)
becomes

Vvisc. =
Φ

4πR

[
ln

(
8R√
4νt

)
− 0.558

]
, (6.17)

indicating that the more viscous a fluid, the slower a vortex ring (of a given
buoyancy) will ascend. As a result rings of a lower Reynolds number will rise more
slowly, and thus the stem connecting the ring to the wake will be stretched more
slowly. Since the stretching process encourages the diffusion of ωϕ/r away from
the axis we might expect that faster rising rings separate more quickly.

6.10 Summary
We have characterised the behaviour of the flow resulting from a buoyant perturbation
in an otherwise quiescent fluid. To do this we broke the flow down into three key
stages; the buoyant blob, the mushroom cap, and the buoyant vortex ring. We
also looked at the evolution of the wake left behind by the ring. Although these
phenomena have previously been discussed individually, we believe that this is
the first time the development from buoyant blob to mushroom cap and on into a
buoyant vortex ring has been treated with a consistent mathematical framework
across all stages as a single phenomenon.

The equations we have used can link the results of Shlein for buoyant blobs to
those of Turner for buoyant vortex rings. By examining the evolution of the impulse,
flux, and γ, we identified key points in the development of the thermal such as
the roll-up of the cap and separation of the ring from the wake. We have taken a
closer look at the mushroom cap stage, examining and explaining the scaling of
cap radius with time (R3 ∼ t), and providing validation for the model presented by
Davidson et al. (2007). We have also shown that this approach gives equivalent
results for buoyant vortex rings when compared to the analysis performed by Turner
(1957). We find that radial expansion of the slowing ring (R2 ∼ t) is required for
compatibility with linearly increasing impulse. As a result of this new approach we
have also been able to shed light on a number of unsolved problems from previous
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works. We show that the constant acceleration of the buoyant blob observed by
Shlien (1976) can be explained by considering the dynamic balance at early times.
We also resolved the apparent paradox raised by Davidson et al. (2007) by noting
that the radial expansion that occurs during the mushroom cap phase allows the
impulse to continue increasing whilst the cap tends towards a constant velocity.

Exploring the effect of Reynolds and Prandtl number, we have shown that
the early stages of development are key in determining the final properties of the
buoyant vortex ring. We found that there is an independence in properties above
a critical Reynolds number due to cap formation occurring on a timescale where
viscosity has no significant effect. The independence of impulse arises from the
fact that, when forming, the ring always wraps up the same proportion of the initial
heat into its core. In contrast we find that the effects of thermal diffusion can have
a significant effect on the early stages of development when there is little motion.
Thermal diffusion acts to smooth out the temperature field, inhibiting the generation
of vorticity.

Finally, by considering the behaviour of the wake left behind by the ring,
we show that the formation of secondary vortex rings is entirely to be expected.
Buoyant fluid left behind by the first ring can undergo a similar process, forming
a cap and eventually a secondary buoyant vortex ring that separates to follow the
first. Again, the effects of thermal diffusion can become noticeable in the wake
where the smoothing of temperature gradients interferes with vorticity generation
and inhibits the production of successive rings.
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Appendix 6.A Scaling analysis at early times
Given that u is small for small t we can approximate equation (2.18) as,

∂u
∂t

∼ g βθ =⇒ u ∼ g βθt . (6.18)

Based on this we can quantify the relative sizes of the advective terms in both
equation (2.18) and (2.9) as,

∂u
∂t

u · ∇u ∼
∂θ
∂t

u · ∇θ ∼ l
ut

∼ l
t (gβθt) (6.19)

∼ l2

U2 t2 .

Hence we can define a timescale over which we may regard the advective terms to
be small as follows:

∂u
∂t ≫ u · ∇u
∂θ
∂t ≫ u · ∇θ

}
for t ≪ l

U
. (6.20)

Now we turn our attention to the thermal diffusion. Based on the above analysis
we can approximate equation (2.9) for small t as,

∂θ

∂t
∼ α∇2θ ∼ α

θ

l2 . (6.21)
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A scaling analysis then gives

∆θ

θ̂
∼

∂θ
∂t t

θ̂
∼
α θ̂

l2 t

θ̂
∼ αt

l2 ∼
(
lα
l

)2
, (6.22)

where ∆θ is a typical change in temperature and lα is the diffusion length. In order
to regard thermal diffusion as negligible (∆θ/θ̂ ≪ 1) we therefore require,

α (l/U)
l2 ≪ 1 , (6.23)

or alternatively
Pe =

Ul
α

≫ 1 , (6.24)

where Pe is the Péclet number.
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Chapter 7

Concluding remarks

In this chapter we review the main findings of this thesis around the theme of
modelling and understanding atmospheric vortices. As well as the results directly
from this work we also ponder the wider implications relating to the study of
environmental flows. We complete our appraisal by outlining some potential
avenues for future research that might build upon this work.

7.1 Eye dynamics
In chapter 4 and Atkinson et al. (2019) we reviewed a number of pieces of work
relating to the study of atmospheric vortices, in particular focussing on those
concerning internal structures in the flow. Notably we brought together two areas
of research (columnar and disklike vortices) that for a time have been on separate
paths, despite both being concerned with similar phenomena. In our review we
demonstrated how similar conclusions have been reached by both communities,
albeit sometimes being presented in different ways. In particular we highlight the
importance of azimuthal vorticity to the structure and evolution of atmospheric
vortices, noting that it features in many works, even if not explicitly named.

Our work builds upon a theory for eye formation proposed by Oruba et al.
(2017), where boundary layer vorticity is swept up into the flow to form an eyewall
and, subsequently, an eye. We first confirm these results, and the importance of
azimuthal vorticity in forming internal structures, through a series of numerical
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Fig. 7.1 Reproduction of figure 4.21 showing the frequencies of eye oscillations.

simulations. Following this we increase the thermal forcing to a point at which we
observe a Hopf bifurcation to an oscillatory state. We propose that this oscillation
occurs as a result of a trapped inertial wave at the centre of the vortex. A range of
evidence to support this theory is presented, including a comparison of streamlines
and angular momentum to a standing inertial wave in a cylinder, and a comparison
of the frequencies for inertial waves in a cylinder, frustum, and our simulations.
Figure 7.1 is a summary of these results. There is evidence that similar oscillations
have been observed in numerical models of columnar vortices (Harlow & Stein,
1974), and we further theorise that such oscillations may be present in real tropical
cyclones based on the observations of Chen et al. (2015), though more work would
be required to confirm this. We finish chapter 4 by comparing our model to a real
tropical cyclone and discussing its limitations.

There are a number of questions that follow on from this work that might
provide avenues for future investigation. Perhaps the most obvious extension would
be to explore the presence of inertial waves in real cyclones by probing further the
observations of Chen et al. (2015) and others. It might also be worth exploring
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large meteorological simulations to look for evidence of these waves and explore
how they might vary in a more complex system.

In a similar vein it would be interesting to begin building the model used in
chapter 4 back up to include more realistic atmospheric effects and see how they
affect the behaviour. One of the most obvious changes to make would be to include
the effects of turbulence. Perhaps the easiest way to do this would be with a
large eddy simulation (LES). Another important change, particularly to support
any experimental work like that of chapter 5 would be to relax the axisymmetry
constraint of our simulations and explore three-dimensional effects. Other examples
of effects to investigate include latent heat release and more complicated thermal
boundary conditions.

Another area that we would like to explore is how our results extend to columnar
vortices. Since eye-like structures have been observed in both disklike and columnar
vortices could it be that there is a similar process at work in both? Results of other
authors (Rotunno, 1977, 1979, 1980; Harlow & Stein, 1974) show similarities to
ours, most notably the presence of an annulus of negative azimuthal vorticity that
we term the eyewall. It would be interesting to explore how these results might be
interpreted, and ideas developed, using the theory for eye formation discussed in this
work. In terms of oscillations in this system we note that vortex breakdown is often
cited as a cause of internal structure in columnar vortices. It is known that classical
vortex breakdown can be interpreted as the manifestation of trapped inertial waves,
so could it be that the oscillations we observe eventually lead to vortex breakdown
in a columnar structure? Finally the presence of an upper boundary, forcing the
flow to overturn, is key in the generation of an eyewall and eye. The nature of this
upper boundary is one of the largest differences between disklike and columnar
vortices, and is still poorly understood for columnar atmospheric vortices. Future
work might extend our simulations to look at the effect of this upper boundary and
examine the transition between disklike and columnar vortices as aspect ratio varies.

The numerical investigations were followed by some laboratory experiments
that were described in chapter 5. The main objective of these was to examine
the theory for eye formation presented previously, specifically the possibility of
replicating our simulations in the laboratory. We showed that it is possible to build
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(a) Sketch taken from Veronis (1959). (b) Fluorescein image from experiments.

Fig. 7.2 Reproduction of figure 5.22 showing the top view of the hexagonal cells.

a laboratory experiment similar to the model used in our simulations, and that
this was capable of supporting large scale flows. However, we were not able to
successfully produce an eye at the centre of a stable cyclonic vortex. We believe
that further improvements to the experiment are needed before the desired results
can be obtained. A number of suggestions for future work and development, in
particular focussing on the enforcement of a fixed-flux thermal boundary condition,
were provided. We hope that future experiments might build upon our preliminary
investigation to make this a success.

In addition to investigating the model of eye formation we also performed some
experiments outside of this parameter regime into rotating cellular convection.
An example of this is shown again in figure 7.2. Though there has been much
theoretical work on this topic, there are relatively few examples of the phenomenon
being observed in the laboratory. Our imaging with fluorescein illustrates not only
the hexagonal lattice of cells, but also the path taken by the fluid within cells, rising
upwards at the centre before following an anticyclonic helical path outwards at the
upper surface. These observations were compared to the theoretical descriptions as
shown in figure 7.2.
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Fig. 7.3 The early stages of evolution of a laminar thermal (plots of ωθ/r as in
chapter 6).

7.2 Thermals
In chapter 6 and Atkinson & Davidson (2019) we present a mathematical framework
by which the entire life cycle of a laminar thermal might be analysed. We observed
that thermals transition through three main stages; the buoyant blob, the mushroom
cap, and the buoyant vortex ring. The early stages of this development are illustrated
again in figure 7.3. Though each of these stages has been discussed before, we
believe this to be the first time that development has been treated as a single
phenomenon across all three using a consistent mathematical framework. By
examining the evolution of the impulse, flux, and their ratio γ, we identify and
examine key points in the life-cycle of the thermal such as the roll-up of the cap
and separation of the ring from the wake.

We observe that the vortex rings produced display an independence above a
critical Reynolds number due to cap formation taking place on a timescale where
viscosity has no significant effect. The same cannot be said for the effects of thermal
diffusion, however, which act to smooth out the temperature field, thereby inhibiting
the generation of vorticity. This can have a significant effect at early times when
there is little motion. Overall we find that the early stages in the development are
key in determining the final properties of the buoyant vortex ring that is produced.
As a final result we show, by considering the behaviour of the wake left behind by
the ring, that the formation of secondary vortex rings is entirely to be expected.
Buoyant fluid left behind by the first ring undergoes a similar process, forming a
cap and eventually a secondary buoyant vortex ring that separates to follow the first.
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The turbulent thermal, to which the subject of chapter 6 is an analogue, is a
prevalent phenomenon in the atmosphere. Though there are various examples,
perhaps the most extensive studies come from the field of atmospheric moist
convection where thermals are important in the development of clouds. Observations
of turbulent thermals display similar behaviour to our laminar analogue, rising up
to form caps and then rings that eventually break apart. We hope that the framework
that we have presented for the study of laminar thermals might be extended to the
turbulent case to provide new approaches to examining these structures.

As a final application we also discussed the captivating phenomenon of volcanic
vortex rings. Though some theorise these rings are produced by air exiting an
orifice, there is no conclusive evidence for this. Since these rings display qualitative
similarities to our simulations and experiments we suggest that they could instead
form as a result of buoyant anomalies, with the rings being the final stage of a
laminar thermal. Of course, proving this is challenging due to a lack of observations,
but it is a theory that might perhaps be explored in the future.

7.3 Closing thoughts
As we draw this thesis to a close we reflect briefly upon the wider role of the
work that has been presented. In this study we developed two laminar analogues
for atmospheric phenomena. The first of these displayed a behaviour that was
mathematically classifiable, and could be explained in the context of the laminar
system. Having done this we are now able to look for examples of inertial waves in
nature. Without observing them in the model, one might never have considered
inertial waves as being relevant in the study of atmospheric vortices or as a candidate
to explain oscillations.

Our impromptu but rewarding excursion into laminar thermals illustrates the
role of mathematical theory. By constructing a novel framework to study overall
development, we were able to tackle some previously unresolved questions about
laminar thermals. Looking at the broader picture also allowed us to make links
between the later stages in the development and the early timescales. It is hoped
that some of these ideas might be carried across to analyse atmospheric convection.
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Recalling the quote by the statistician Box, time will tell if our models are useful
but we hope that they are. Regardless, it is clear from our investigations that the use
of simplified models and analogies can be instructive and will remain important in
providing insight into observations and behaviours that cannot be easily explained
or understood. This is true not only in the field of geophysical fluid dynamics, to
which our analogies and results are linked, but across science as a whole. It is clear
that these approaches, alongside improvements in computational modelling and
data acquisition, will continue to be essential in the quest to understand our planet.
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Appendix A

Inertial waves in a cylinder

Here we provide the derivation for standing inertial waves in a cylindrical geometry.
The solution is for a cylinder of radius R and height H, axially aligned with the
rotation axis. The cylinder and the fluid inside rotates at rate Ω. We seek wave
solutions as perturbations to the solid body rotation. The boundary conditions
on the domain are zero velocity normal to the surfaces, i.e. ur = 0 on r = R and
uz = 0 on z = 0 and z = H.

We start with the equations for angular momentum and vorticity in a rotating
fluid, neglecting viscous effects:

DΓ
Dt
= −2Ωrur , (A.1)

and
D
Dt

(ωϕ
r

)
=

∂

∂z

(
Γ2

r4

)
+

2Ω
r
∂uϕ
∂z

. (A.2)

The vorticity can be written in terms of the Stokes stream function as

rωϕ = −∇2
∗Ψ , (A.3)

whilst the velocity can be written as

up = ∇ ×
(
Ψ

r
êϕ

)
=

(
−1

r
∂Ψ

∂z
, 0 ,

1
r
∂Ψ

∂r

)
, (A.4)
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such that our boundary conditions become

∂Ψ

∂z

����
r=R
= 0 ,

∂Ψ

∂r

����
z=0,H

= 0 . (A.5)

We seek solutions of small amplitude which allows us to linearise the equations as
follows:

∂Γ

∂t
= −2Ωrur , (A.6)

and
∂

∂t

(ωϕ
r

)
=

2Ω
r
∂uϕ
∂z

. (A.7)

Taking the time derivative of equation A.7 allows it to be combined with equation
A.6 to eliminate Γ and write the equation in terms of streamfunction:

∂2

∂t2

(
∇2
∗Ψ

)
= − (2Ω)2 ∂

2Ψ

∂z2 , (A.8)

which we can see will support waves of the formΨ = Ψ̂ (r, z) exp [iϖt]. Substituting
this expression results in

∇2
∗Ψ̂ =

(
2Ω
ϖ

)2
∂2Ψ̂

∂z2 . (A.9)

Using separation of variables we assume that the solution can be written in the form

Ψ̂(r, z) = rΨr(r) sin (kz) , (A.10)

where k is a wavenumber (nπ)/H. Substituting this results, after some algebra, in

r2 ∂
2Ψr

∂r2 + r
∂Ψr

∂r
+

(
η2r2 − 1

)
Ψr = 0 , (A.11)

where

η = k

√(
2Ω
ϖ

)2
− 1 , (A.12)

which we recognise as a Bessel equation with the solution

Ψr = C1J1 (ηr) + C2Y1 (ηr) . (A.13)
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We require solutions to remain finite at the axis which tells us that C2 = 0. Applying
the radial boundary condition results in

ηR = ζm , (A.14)

where ζm is the mth zero of the Bessel function J1. Rearranging this tells us that
the frequency of the oscillations for the mode (r, z) = (m, n) is

ϖm,n =
2Ω√

1 +
(

Hζm
nπR

)2
, (A.15)

which is consistent with the requirement that inertial waves have a frequency
between 0 and 2Ω. Finally this allows us to write down an expression for the
streamfunction of the mode (m, n) as being

Ψm,n = A r J1

(
ζm

R
r
)

sin
(nπ

H
z
)

e(iϖm,nt) , (A.16)

from which we can obtain expressions for Γ, ωϕ, and up.
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